Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • logarithmic and parabolic kinetics  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 36 (1991), S. 465-474 
    ISSN: 1573-4889
    Keywords: Pb-In alloy ; oxidation ; logarithmic and parabolic kinetics ; short-circuit diffusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The solid-state oxidation kinetics of a Pb-64 at. % In (50 wt. %) single-phase alloy were studied from room temperature to 150°C using an AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In2O3) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75° C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition on the oxidation kinetics of (Pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at. % In alloys.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...