Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 24 (2000), S. 195-211 
    ISSN: 1573-1979
    Keywords: analog VLSI ; vision chips ; optical flow ; stereo ; neuromorphic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract The extent of pixel-parallel focal plane image processing is limited by pixel area and imager fill factor. In this paper, we describe a novel multi-chip neuromorphic VLSI visual motion processing system which combines analog circuitry with an asynchronous digital interchip communications protocol to allow more complex pixel-parallel motion processing than is possible in the focal plane. This multi-chip system retains the primary advantages of focal plane neuromorphic image processors: low-power consumption, continuous-time operation, and small size. The two basic VLSI building blocks are a photosensitive sender chip which incorporates a 2D imager array and transmits the position of moving spatial edges, and a receiver chip which computes a 2D optical flow vector field from the edge information. The elementary two-chip motion processing system consisting of a single sender and receiver is first characterized. Subsequently, two three-chip motion processing systems are described. The first three-chip system uses two sender chips to compute the presence of motion only at a particular stereoscopic depth from the imagers. The second three-chip system uses two receivers to simultaneously compute a linear and polar topographic mapping of the image plane, resulting in information about image translation, rotation, and expansion. These three-chip systems demonstrate the modularity and flexibility of the multi-chip neuromorphic approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...