Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 131-146 
    ISSN: 0197-8462
    Keywords: microwaves ; cell membrane ; order ; melanin ; oxygen radicals ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The treatment of a B16 melanoma cell line with 2.45-GHz pulsed microwaves (10 mW/cm2, 10-μs pulses at 100 pps, 1-h exposure; SAR, 0.2 W/kg) resulted in changes of membrane ordering as measured by EPR (electron paramagnetic resonance) reporter techniques. The changes reflected a shift from a more fluid-like phase to a more solid (ordered) state of the cell membrane. Exposure of artificially prepared liposomes that were reconstituted with melanin produced similar results. In contrast, neither B16 melanoma cells treated with 5-Bromo-2-Deoxyuridine (3 μg/day × 7 days) to render them amelanotic, nor liposomes prepared without melanin, exhibited the microwave-facilitated increase of ordering. Inhibition of the ordering was achieved by the use of superoxide dismutase (SOD), which strongly implicates oxygen radicals as a cause of the membrane changes. The data indicate that a significant, specific alteration of cell-membrane ordering followed microwave exposure. This alteration was unique to melanotic membranes and was due, at least in part, to the generation of oxygen radicals. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...