Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: hepatocyte growth factor ; receptor-mediated endocytosis ; pharmacokinetics ; liver
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The distribution of 125I-hepatocyte growth factor (HGF) to either liver parenchymal cells (PC) or non-parenchymal cells (NPC) was investigated in rats. Methods. After injection of a trace amount of 125I-HGF, the distribution of radioactivity determined by microautoradiography closely resembled that of 125I-epidermal growth factor which distributes mainly to PC. Results. The uptake clearance of 125I-HGF estimated by determining the radioactivity of isolated liver cells was three times higher for PC than for NPC. This suggests that HGF distributes mainly to PC at relatively low doses. On the other hand, the uptake clearance by PC fell on coadministering an excess (80 µg/kg) of unlabeled HGF, while no change was observed for NPC, indicating that a saturable process for the hepatic handling of HGF exists only in PC where the HGF receptor is expressed. Conclusions. At such a dose the uptake clearance was comparable for both PC and NPC showing that HGF distributes to both cell types although NPC have few HGF receptors. Since the distribution to NPC was relatively non-specific and heparin-sensitive, it may be that heparin-like substances, which are believed to exist on PC and/ or the extracellular matrix, also exist on NPC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: α1-acid glycoprotein ; protein binding ; dissociation rate ; species difference ; physiological model ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The extremely low clearance and small distribution volumeof UCN-01 in humans could be partly due to the high degree of bindingto hAGP (1,2). The quantitative effects of hAGP on the pharmacokineticsof UCN-01 at several levels of hAGP and UCN-01 were estimatedin rats given an infusion of hAGP to mimic the clinical situation anda physiological model for analysis was developed. Methods. The plasma concentrations of UCN-01 (72.5–7250 nmol/kgiv) in rats given an infusion of hAGP, 15 or 150 nmol/h/kg, weremeasured by HPLC. Pharmacokinetic analysis under conditionsassuming rapid equilibrium of protein binding and incorporating thedissociation rate was conducted. Results. The Vdss and CLtot of UCN-01 (725 nmol/kg iv) in ratsgiven an infusion of hAGP, 150 nmol/h/kg, fell to about 1/250 and 1/700that in control rats. The Vdss and CLtot following 72.5–7250nmol/kg UCN-01 to rats given 150 nmol/h/kg hAGP were 63.9–688ml/kg and 3.18–32.9 ml/h/kg, respectively, indicating non-linearitydue to saturation of UCN-01 binding. The CLtot estimated by thephysiological model assuming rapid equilibrium of UCN-01 bindingto hAGP, was six times higher than the observed value while the CLtotestimated by the model incorporating koff, measured using DCC, wascomparable with the observed value. Conclusions. These results suggest that the slow dissociation ofUCN-01 from hAGP limits its disposition and elimination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: carrier-mediated active transport ; well-stirred model ; parallel-tube model ; dispersion model ; nonlinearity ; pharmacokinetics ; tissue-distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Of the HMG-CoA reductase inhibitors, the hydrophilic pravastatin has been shown to exhibit relatively specific inhibition of cholesterol synthesis in the liver. As one of the reasons for this relatively specific pharmacological activity, we demonstrated that the tissue distribution of pravastatin is limited because of its high hydrophilicity, while hepatic uptake by active transport takes place at the liver surface via a multispecific anion transporter (M. Yamazaki et al., Am. J. Physiol., 264, G36-44, 1993). In this study, we examined the hepatic elimination of pravastatin at steady-state. Methods. After i.v. infusion, the plasma concentrations of pravastatin in both arterial and hepatic venous blood were measured. Results. The hepatic availability at steady-state exhibited a clear increase on increasing the infusion rate of pravastatin. The total hepatic elimination rate at steady-state exhibited Michaelis-Menten type saturation with the drug concentration in the capillary defined by typical mathematical models (i.e., well-stirred, parallel-tube and dispersion models), Km and Vmax values being comparable with those obtained from analysis of the initial uptake velocity using in vitro isolated hepatocytes. Conclusions. These results indicate that overall hepatic intrinsic clearance of pravastatin at steady-state is regulated by the uptake process, followed by rapid metabolism and/or biliary excretion with minimal efflux to the circulating blood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...