Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 79 (2001), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study, GABA efflux transport from brain to blood was estimated by using the brain efflux index (BEI) method. [3H]GABA microinjected into partietal cortex area 2 (Par2) of the rat brain was eliminated from the brain with an apparent elimination half-life of 16.9 min. The blood–brain barrier (BBB) efflux clearance of [3H]GABA was at least 0.153 mL/min/g brain, which was calculated from the elimination rate constant (7.14 × 10−2 min−1) and the distribution volume in the brain (2.14 mL/g brain). Direct comparison of the apparent BBB influx clearance [3H]GABA (9.29 µL/min/g brain) and the apparent efflux clearance (153 µL/min/g brain) indicated that the efflux clearance was at least 16-fold greater than the influx clearance. In order to reduce the effect of metabolism in the neuronal cells following intracerebral microinjection, we determined the apparent efflux of [3H]GABA in the presence of nipecotic acid, a GABA transport inhibitor in parenchymal cells, using the BEI method. Under such conditions, the elimination of [3H]GABA across the BBB showed saturation and inhibition by probenecid in the presence of nipecotic acid. Furthermore, the uptake of [3H]GABA by MBEC4 cells was inhibited by GABA, taurine, β-alanine and nipecotic acid in a concentration-dependent manner. It is likely that GABA inhibits the first step in the abluminal membrane uptake by brain endothelial cells, and that probenecid selectively inhibits the luminal membrane efflux transport process from the brain capillary endothelial cells based on the in vivo and in vitro evidence. The BBB acts as the efflux pump for GABA to reduce the brain interstitial fluid concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 45 (2005), S. 689-723 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Recent studies have revealed the import role played by transporters in the renal and hepatobiliary excretion of many drugs. These transporters exhibit a broad substrate specificity with a degree of overlap, suggesting the possibility of transporter-mediated drug-drug interactions with other substrates. This review is an overview of the roles of transporters and the possibility of transporter-mediated drug-drug interactions. Among the large number of transporters, we compare the Ki values of inhibitors for organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) and their therapeutic unbound concentrations. Among them, cephalosporins and probenecid have the potential to produce clinically relevant OAT-mediated drug-drug interactions, whereas cyclosporin A and rifampicin may trigger OATP-mediated ones. These drugs have been reported to cause drug-drug interactions in vivo with OATs or OATP substrates, suggesting the possibility of transporter-mediated drug-drug interactions. To avoid adverse consequences of such transporter-mediated drug-drug interactions, we need to be more aware of the role played by drug transporters as well as those caused by drug metabolizing enzymes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-4812
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0843
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Plasma concentration-time profiles of nimustine hydrochloride, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), in the mouse, rat, rabbit, and dog were determined by high-performance liquid chromatographic analysis. The pharmacokinetic parameters for these four animal species and previously reported clinical data were analyzed for investigation of interspecies correlation. Loglog plots of body weight (W; kg) vs total plasma clearance (CLtot, p; ml/min) and steady-state distribution volume (Vd, ss; 1) for the four animal species were linear, with high correlation coefficients (r 0.996 for both parameters), despite the fact that the nonrenal clearance was 〉97% in these species. Linear regression on the plots excluding human data yielded allometric equations (CLtot,p=50.6 W0.957; Bd, ss=1.29 W1.03) that were extrapolated to predict ACNU pharmacokinetic parameters in humans. For both parameters, however, there were 3-fold differences between the predicted and observed parametric values. To investigate these discrepancies, we measured serum protein binding of ACNU in these animal species and in humans. The values of CLtot,p and Vd,ss were converted into those of CLu tot,p and Vd,u ss, which correspond to the parameters for unbound ACNU. In this case, correlation coefficients of the log-log plots excluding human data (CLu tot,p=71.7 W0.891; Bd,u ss=1.82 W0.966) were also high (r≥0.991). The extrapolated values vs those observed in a 70-kg human were the following: CLu tot,p, 3,160 vs 2,290 ml/min; Vd,u ss, 110 vs 1061. Thus, the animal data were successfully extrapolated to yield better predictions of human pharmacokinetic parameters if the analysis was based on the unbound plasma concentration of ACNU. In addition, the predicted plasma concentration-time profile for humans also showed good agreement with the observed ones. These results suggest the importance of measuring unbound fractions of drugs for more accurate prediction of human pharmacokinetic parameters by extrapolation of animal data to the human situation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0843
    Keywords: Key words CPT-11 ; Pharmacokinetics ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: To examine the pharmacokinetic relationships between humans and monkeys, we studied the disposition of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) and its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), in rhesus monkeys. Methods: CPT-11 was administered to a total of six monkeys at doses of 3, 7, 15 and 25 mg/kg by intravenous infusion for 10 min and plasma concentrations and pharmacokinetic parameters of CPT-11 determined. Results: Maximum plasma concentrations at 25 mg/kg reached around 10 000 ng/ml, and dropped to 500 ng/ml in 8 h. Plasma concentrations of SN-38 remained between 2 and 10 ng/ml. Mean values of systemic clearance, mean residence time and distribution volume at steady state, the major pharmacokinetic parameters for CPT-11, were 13.3 (ml/min per kg), 192 (min) and 2553 (ml/kg), respectively. The initial plasma concentration ratio of lactone to total CPT-11, 76%, declined to about 20% within 75 min, and the final ratio was about 40% at 8 h; the initial ratio of SN-38 was 72%, dropped to 34% within 70 min and finally recovered to 55% at 8 h. Conclusion: Comparison with human data revealed that systemic clearances of CPT-11 and the maximum AUC of SN-38 were not as different between humans and monkeys as between humans and mice, but the metabolic conversion of CPT-11 into SN-38 in monkeys was significantly lower than in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0843
    Keywords: Key words Irinotecan ; Biliary excretion ; P-glycoprotein ; cMOAT
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  A frequent dose-limiting effect of irinotecan (CPT-11) is its gastrointestinal toxicity (diarrhea), which is thought to be related to biliary excretion of CPT-11 and its metabolites. Accordingly, we have investigated the mechanism of biliary excretion of these compounds. In vivo pharmacokinetic studies revealed that the biliary excretion of the four anionic forms of CPT-11 and its metabolites was reduced in Eisai hyperbilirubinemic rats, which carry a mutation of the hepatic canalicular multispecific organic anion transporter (cMOAT) gene. The protein encoded by this gene is expressed on the bile canalicular membrane and is responsible for the transport of organic anions into bile. Detailed analysis using isolated liver bile canalicular membrane vesicles to identify transport systems showed that cMOAT is responsible for biliary excretion of the low-affinity component of the carboxylate form of CPT-11 and the high-affinity component of both the lactone and carboxylate forms of SN-38 glucuronide. The carboxylate form of SN-38 is transported by cMOAT alone. Transport of the high-affinity component of CPT-11 was inhibited by verapamil and PSC-833, but their effect on the transport of its low-affinity component was minimal. In addition, ATP dependence in the uptake of CPT-11 by membrane vesicles obtained from a P-glycoprotein (P-gp)-overexpressing cell line was observed. Thus P-gp may be responsible for transport of the high-affinity component of the carboxylate form of CPT-11.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0843
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Based on a pharmacokinetic model proposed by Jusko, which assumes that the cell killing action of cell cycle phase-non-specific agents occurs as a bimolecular reaction depending on drug concentration and cell density, we derived a cell kill kinetic equation for these drugs, including the decomposition constant in culture medium. This equation revealed that the cell killing activity of these drugs depends on the value of concentration x exposure time or the area under the drug concentration-time curve (AUC). It was also clarified that the curves for concentration-exposure time necessary for 90% cell kill on a log scale simulated on the basis of the equation differ according as whether drugs are stable or unstable in the culture medium, being expected to be linear with a slope of-1 in the former case, and to take the form of an asymptotic curve in the latter. For three cell cycle phase-non-specific agents, mitomycin C (MMC), 1-(4-amino-2-methylpyrimidine-5-yl)-methyl-3-(2-chloroethyl)3-nitrosourea hydrochloride (ACNU), and nitrogen mustard (HN2), we assessed the concentrations necessary for 90% cell kill (IC90) with various exposure times and the degradation rate constants under the culture conditions used. MMC was quite stable during the incubation, while ACNU and HN2 were unstable. When IC90's and exposure times were plotted on the above-mentioned graph, a linear relationship with a slope of-1 was seen for MMC, while for ACNU and HN2 the anticipated asymptotic curves resulted. We also ascertained that the decomposition constants for ACNU and HN2 expected on the basis of these curves showed a good agreement with the corresponding experimentally observed values. These results indicate that the cell killing action of cell cycle phase-non-specific drugs can be well described by a pharmacodynamic model and equation employing their decomposition constants and are dependent on the concentration-time product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-8744
    Keywords: drug-drug interaction ; tolbutamide-sulfonamide interaction ; sulfaphenazole ; sulfadimethoxine ; sulfamethoxazole ; physiological pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A blood flow rate-limited pharmacokinetic model was developed to study the effect of sulfonamide on the plasma elimination and tissue distribution of14C -tolbutamide (TB) in rats. The sulfonamides (SA) used were sulfaphenazole (SP), sulfadimethoxine (SDM), and sulfamethoxazole (SMZ). The tissue-to-plasma partition coefficients (Kp) of all tissues studied, i.e., lung, liver, heart, kidney, spleen, G.I. tract, pancreas, brain, muscle, adipose tissue, and skin, increased in the presence of SA, but except for brain, liver, and spleen, the tissue-to-plasma unbound concentration ratio (Kp, f) of other tissues did not show a significant alteration. This suggested that the tissue binding of TB is not affected by SA and that the increase of Kp is due mainly to the displacement of plasma protein-bound TB by SA. The concentrations of TB in several tissues and plasma were predicted by a physiologically based pharmacokinetic model using in vitro plasma binding and metabolic parameters, the plasma-to-blood concentration ratio and the tissue-to-plasma unbound concentration ratios having been determined from both the tissue and plasma concentrations of TB at the β-phase after intravenous administration of TB and the plasma free fraction. The predicted concentration curves of TB in each tissue and in plasma showed good agreement with the observed values except for the brain, for which the predicted concentrations were lower than the observed values in the early time period. In the SP- and SDM-treated rats, the predicted free concentration of TB in the target organ, the pancreas, at 6 h was six times higher than that of the control rats. From these findings, it is suggested that physiologically based pharmacokinetic analysis could be generally useful to predict approximate plasma and tissue concentrations of a drug in the presence of drug-drug interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...