Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1463
    Keywords: 5-Hydroxy-(β-11 C)-L-tryptophan ; monkey ; positron emission tomography ; enzyme inhibition ; decarboxylation rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 5-Hydroxy-L-tryptophan labelled with 11 C is introduced as a tracer for the in vivo assessment of brain serotonin synthesis in the Rhesus monkey using positron emission tomography, PET. Increasing radioactivities were seen in the striatal area in contrast to that seen in other brain regions. Following 11 C-labelled L-tryptophan an even spread of brain radioactivity was seen. This selective increase most probably results from the decarboxylation of tracer and retention of formed products since no striatal increase of radioactivity was seen when 5-hydroxy-L-tryptophan labelled with 11 C in the carboxy-position was administered. Furthermore, pretreatment of the monkey with a centrally active decarboxylase inhibitor (NSD 1015,10 mg/kg) did not lead to increased striatal radioactivities after the administration of 5-hydroxy-(β-11C)-L-tryptophan. The selective utilization of the radiotracer in the striatal area increased with a rate constant calculated to be 0.0055 ± 0.0015 min−1 (n = 5) using the surrounding brain as reference area. A non-significant influence of radiolabelled metabolites to the rate constants measured was shown after pretreatment of the monkeys with selective and non-selective monoamine oxidase inhibitors, respectively. These results may give a basis for the use of the new tracer 5-hydroxy-(β-11 C)-L-tryptophan in PET-studies of brain serotonin metabolism in health and disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: L-[11C]DOPA ; brain radioactivity ; decarboxylation rate ; pharmacological perturbations ; healthy volunteers ; positron emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The in vivo dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) labelled with11 C in the Β position has been used for positron emission tomography studies of L-DOPA utilization in the brain. The brain uptake and kinetics of L-[11 C]DOPA-derived radioactivity were studied in healthy male volunteers, and the specific utilization, i.e. decarboxylation rate of L-[11 C]DOPA in different brain areas, was quantified using a brain region devoid of specific L-[11C]DOPA utilization as reference. Total uptake of L-[11 C]DOPA-derived radioactivity measured in the brain varied two- to threefold between subjects, with highest radioactivity in the striatal region. Specific utilization of L-[11C]DOPA radioactivity in the striatal region and in the prefrontal cortex varied twofold between subjects. No specific utilization was observed in other regions of the brain. The uptake of radioactivity in the brain increased dose-dependently with the simultaneous administration of unlabelled L-DOPA up to 10 mg. On the other hand, a decrease in brain radioactivity uptake was measured after pretreatment with 1 mg/kg oral L-DOPA, indicating competition for transport across the blood-brain barrier. Benserazide 0.5 mg/ kg orally increased somewhat the radioactivity uptake to the brain. None of these pharmacological perturbations demonstrated any clearcut effect on specific utilization of L-[11C]DOPA. Thus,11C-labelled L-DOPA is introduced as an alternative to the well-established L-6-[18 F]fluoro-DOPA methodology in clinical studies on brain L-DOPA uptake and dopamine synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: (β-11C)-L-dopa ; 6-fluoro-(β-11C)-L-dopa ; positron emission tomography ; catechol-O-methyl transferase ; monkeys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The regional brain kinetics of (β-11C)-L-dopa and 6-fluoro-(β-11C)-L-dopa was measured in six Rhesus monkeys using positron emission tomography (PET). Radioactivity accumulated specifically in the striatal region and the increase in L-dopa-derived radioactivity utilization with time was calculated using surrounding brain as a reference area, this being devoid of dopaminergic activity. The rate constant for selective striatal utilization i.e. grossly decarboxylation was 0.0110 ± 0.0007 (S.D) and 0.0057 ± 0.0006 min1 for (β-11C)-L-dopa and 6-fluoro-(β-11C)-L-dopa, respectively. After pre-treatment of the monkeys with the peripherally and centrally active catecholamine-O-methyl transferase (COMT) inhibitor Ro 40-7592 10 mg/kg, the decarboxylation rate remained unchanged (0.0112 ± 0.0015 min-1) for (β11C)-L-dopa, whereas an increase in rate was measured for 6-fluoro-(β-11C)L-dopa (0.0092 ± 0.0015 min−1). Differences in the distribution of radiolabelled metabolites i.e. the corresponding O-methyl-L-dopa in the reference area is most probably the reason for the difference in calculated decarboxylation rate seen between the radiotracers. The higher decarboxylation rate measured for 6-fluoro-(β-11C)-L-dopa after blockade of COMT shows that the radiolabelled metabolites i.e. 6-fluoro-O-methyl-(β-11C)-L-dopa significantly contributes to background radioactivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1435-1463
    Keywords: Tetrahydrobiopterin ; muscarinic cholinergic receptor ; dopamine D1, D2, D3 receptors ; positron emission tomography ; monkey brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (R-THBP) on the central cholinergic and dopaminergic systems in the Rhesus monkey brain were investigated by positron emission tomography (PET) with the muscarinic cholinergic receptor ligands (N-[11C]methyl-benztropine) and dopaminergic receptor ligands selective for D1 D2, and D3 subtypes ([11C]SCH23390, N-[11C]methyl-spiperone, and (+)[11C]UH232, respectively). None of the doses (3, 10, and 30 mg/kg i.v.) of R-THBP used significantly affected the regional cerebral blood flow (rCBF as determined by Raichle's H2 15O method), and 10 mg/kg of R-THBP had little effect on the regional cerebral metabolic rate of glucose (rCMRglc) in the Rhesus monkey brain, as assessed by the graphical [18F]fluoro-deoxyglucose method. The effect of R-THBP on the muscarinic cholinergic system was dose dependent; while 3 mg/kg of R-THBP did not significantly alter the uptake ratio of N-[11C]methyl-benztropine in several brain regions to that in the cerebellum, 10 and 30 mg/kg of R-THBP significantly reduced the uptake ratio in the thalamus, as well as in the frontal and temporal cortices. None of the doses (3, 10, and 30 mg/kg i.v.) of R-THBP tested affected [11C]SCH23390 (dopamine D1 receptor) binding. However, the k3 value for N-[11C]methyl-spiperone (dopamine D2 receptor) binding, which represents the association rate × Bmax value, was significantly decreased in the striatum. The uptake ratio of (+)[11C]UH232 (dopamine D3 receptor) in the striatum to that in the cerebellum was also decreased by administration of R-THBP (3 and 30 mg/kg i.v.). These findings suggest that R-THBP acts on dopamine D2 and D3 receptors selectively without markedly affecting dopamine D1 receptor binding. Furthermore, the changes in cholinergic and dopamine D2 and D3 receptors in vivo can not be attributed to a change in rCBF but may depend on the action of R-THBP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-1463
    Keywords: 5-Hydroxy-L-(β-11 C)tryptophan ; L-(β-11 C)DOPA ; positron emission tomography ; aromatic amino acid decarboxylase ; monkeys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The regional brain kinetics following 5-hydroxy-L-(β-11 C)tryptophan and L-(β-11 C)DOPA intravenous injection was measured in twelve Rhesus monkeys using positron emission tomography (PET). The radiolabelled compounds were also injected together with various doses of unlabelled 5-hydroxy-L-tryptophan or L-DOPA. The radioactivity accumulated in the striatal region and the rate of increased utilization with time was calculated using a graphical method with back of the brain as a reference region. The rate constants for decarboxylation were 0.0070 ± 0.0007 (S. D) and 0.0121±0.0010min−1 for 5-hydroxy-L-(β-11C)tryptophan and L-(β-11 C)DOPA, respectively. After concomitant injection with unlabelled 5-hydroxy-L-tryptophan, the rate constant of 5-hydroxy-L-(β-11 C)tryptophan decreased dose-dependently and a 50 percent reduction was seen with a dose of about 4mg/kg of unlabelled compound. A decreased utilization rate of L-(β-11 C)DOPA was seen only after simultaneous injection of 30 mg/kg of either L-DOPA or 5-hydroxy-L-tryptophan. This capacity limitation was most likely interpreted as different affinity of the striatal aromatic amino acid decarboxylase for L-DOPA and 5-hydroxy-L-tryptophan, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...