Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: ABA-induced proteins ; viviparous embryos ; water deficit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants. During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos. These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses. The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...