Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 1393-1395 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report the successful deposition of highly c-axis oriented CaBi2Nb2O9 (CBN) thin films directly on p-type Si(100) substrates by pulsed laser deposition. The CBN thin films exhibited good structural, dielectric, and CBN/Si interface characteristics. The electrical measurements were conducted on CBN thin films in a metal–ferroelectric–semiconductor (MFS) capacitor configuration. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 80 and 0.051, respectively. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10−7A/cm2 at an applied electric field of 100 kV/cm. The capacitance–voltage measurements on MFS capacitors established good ferroelectric polarization switching characteristics. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 3492-3494 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant effect of the introduction of O2-plasma discharge during pulsed laser ablative deposition of SrBi2Ta2O9 (SBT) films on improving the crystallite orientation and ferroelectric properties has been described. O2-plasma assists in the formation of highly crystalline films at a low 700 °C temperature over (111) oriented Pt films coated Si(100) single crystal substrates at a nominal pressure of 200 mTorr. Plasma excitation potential, applied at an auxiliary ring electrode placed near the substrate, has a profound effect on surface morphology, crystallite orientation, and remnant polarization, Pr values. At −350 V, SBT growth at 700 °C with predominant (a-b) orientation showing high Pr∼6.5 μC/cm2 in the as-deposited state has been obtained. In comparison, SBT films deposited identically but without the plasma show a low Pr of ∼1.7 μC/cm2. Ionized cationic species along with ionic and atomic oxygen present in the plasma improve thermodynamic stability of the film growth through enhanced chemical reactivity and thus eliminates the need for any severe postgrowth crystallization anneal step in the synthesis of SBT films. Impingement of energetic O2 ions and atomic oxygen helps lower the nucleation barrier for the growth of (a-b) crystallites and changes the c-axis orientation from normal to near parallel to the film plane. Quality of the film declines with the plasma excitation potential as enhanced kinetic energy of impinging O2 ions introduce defects and reduce nucleation density by resputtering from the substrate. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 1041-1043 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the thin films of solid–solution material (1−x)SrBi2Ta2O9−xBi3Ti(Ta1−yNby)O9 fabricated by a modified metalorganic solution deposition technique for ferroelectric random access memory devices. Using the modified technique, it was possible to obtain the pyrochlore free crystalline thin films at an annealing temperature as low as 600 °C. The solid–solution of layered perovskite materials helped us to significantly improve the ferroelectric properties, higher Pr and higher Tc, compared to SrBi2Ta2O9; a leading candidate material for memory applications. For example, the films with 0.7 SrBi2Ta2O9–0.3Bi3TiTaO9 composition and annealed in the temperature range 650–750 °C exhibited 2Pr and Ec values in the range 12.4–27.8 μC/cm2 and 68–80 kV/cm, respectively. The leakage current density was lower than 10−8 A/cm2 at an applied electric field of 200 kV/cm. The films exhibited good fatigue characteristics under bipolar stressing. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 1080-1082 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Polycrystalline SrBi2Ta2O9 thin films having a layered-perovskite structure were fabricated by a modified metalorganic solution deposition technique using room temperature processed alkoxidecarboxylate precursor solution. It was possible to obtain a complete perovskite phase at an annealing temperature of 650 °C and no pyrochlore phase was observed even up to 600 °C. In addition, the SrBi2Ta2O9 thin films annealed at 750 °C exhibited better structural, dielectric, and ferroelectric properties than those reported by previous techniques. The effects of postdeposition annealing on the structural, dielectric, and ferroelectric properties were analyzed. The electrical measurements were conducted on Pt/SrBi2Ta2O9/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor at 100 kHz were 330 and 0.023 and the remanent polarization and the coercive field were 8.6 μC/cm2 and 23 kV/cm, respectively, for 0.25-μm-thick films annealed at 750 °C. The leakage current density was lower than 10−8 A/cm2 at an applied electric field of 150 kV/cm. The films showed good switching endurance under bipolar stressing at least up to 1010 switching cycles. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 5 (1993), S. 1636-1640 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 5 (1993), S. 535-539 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Materials research innovations 2 (1999), S. 299-302 
    ISSN: 1433-075X
    Keywords: Key words Tantalum oxide ; Thin film ; Dielectric properties ; Insulating properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Tantalum oxide (Ta2O5) is a promising high dielectric constant material for the DRAM applications because of its ease of integration compared to other complex oxide dielectrics. The dielectric constant and thermal stability characteristics of bulk Ta2O5 samples were reported to enhance significantly through small substitutions of Al2O3. However, this improvement in the dielectric constant of (1-x)Ta2O5-xAl2O3 is not clearly understood. The present research attempts to explain the higher dielectric constant of (1-x)Ta2O5-xAl2O3 by fabricating thin films with enhanced dielectric properties. A higher dielectric constant of 42.8 was obtained for 0.9Ta2O5–0.1Al2O3 thin films compared to that reported for pure Ta2O5 (25–30). This increase was shown to be closely related to a-axis orientation. Pure Ta2O5 thin films with similar a-axis orientation also exhibited a high dielectric constant of 51.7, thus confirming the orientation effect. The leakage current properties and the reliability characteristics were also found to be improved with Al2O3 addition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 13 (1994), S. 236-237 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1980), S. 2113-2115 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...