Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    Urbana, etc. : Periodicals Archive Online (PAO)
    American Journal of Psychology. 104:1 (1991:Spring) 61 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The apoaequorin-coding region from complementary DNA clone pAEQl (ref. 7) was fused to the cauliflower mosaic virus (CMV) 35S promoter8 and transferred to Nicotiana plum-baginifolia using the Agrobacterium tumefaciens pBIN19 binary vector system9 to provide constitutive expression (Fig. la). ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-2048
    Keywords: Cucumis (cotyledon) ; Glyoxylate cycle ; Senescence ; Sucrose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When cotyledons are detached from cucumber (Cucumis sativus L. cv. Masterpiece) plants 14 d after seed imbibition, accumulation of the glyoxylate-cycle enzymes malate synthase (MS) and isocitrate lyase (ICL) occurs rapidly in the dark but not in the light. This is primarily due to an increase in transcript abundance. It has been proposed that glyoxylate-cycle enzymes are synthesised in response to lipid degradation. However, MS and ICL synthesis in detached cucumber cotyledons begins before a decline in lipid can be detected. Furthermore, the activation of MS and ICL gene expression does not correlate with loss of chlorophyll, carotenoid, protein or RNA. These results are discussed in terms of the activation of genes encoding glyoxylate-cycle enzymes and their possible function in detached and senescing organs. Previous work (Graham et al, 1992, Plant Cell 3, 349–357) has suggested that sucrose or other carbohydrates can repress the synthesis of MS and ICL. Consistent with this proposal, incubation of detached cotyledons in the light leads to a fivefold increase in sucrose content. However, when MS and ICL synthesis occurs in the dark, no change in the amount of sucrose is detected. Incubation of cotyledons in the dark in the presence of 25 mM sucrose leads to a complete inhibition of the accumulation of MS and ICL. Similarly, cotyledon protoplasts incubated in darkness accumulate MS and ICL, but not if 25 mM sucrose is included in the medium. These results collectively support the view that MS and ICL synthesis responds to the metabolic activities of plant cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1573-5028
    Keywords: Gluconeogenesis ; glyoxylate cycle ; malate synthase ; seed germination ; transgene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cucumber malate synthase (MS) gene, including 1856 bp of 5′ non-trnascribed sequence, has been transferred into Petunia (Mitchell) and Nicotiana plumbaginifolia plants using an Agrobacterium binary vector. The transferred gene is found in variable copy number in different transformants, and is stably transmitted in each case as a single Mendelian character. Transgene mRNA accumulates in the seedling during the first three days of germination, then declines in amount as the cotyledons emerge from the seed. The decline is more pronounced in light-grown seedlings than in dark-grown seedlings. Expression of the MS transgene is also detected at a low level in petals of transformed Petunia plants. In these respects the pattern of MS gene expression is similar in cucumber and in trnasformed plants, showing that the transferred DNA fragment contains a functional MS gene. A 1076 bp fragment of 5′ sequence was linked to the β-glucuronidase reporter gene and transferred into Nicotiana, where it was shown to direct temporal and spatial patterns of expression similar to that of the complete MS gene. However, histochemical localisation of β-glucuronidase activity demonstrated that the chimaeric gene is expressed not only in cotyledons of transgenic plants, but also in endosperm and some hypocotyl cells during early germination. The relevance of these findings to the control of malate synthase gene expression is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-5028
    Keywords: Cucumis sativus ; gene expression ; glyoxylate cycle ; glyoxysome ; isocitrate lyase ; seed germination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cucumber (Cucumis sativus L.) genome contains only a single gene encoding the glyoxylate cycle enzyme isocitrate lyase (ICL). The cucumber icl gene has been isolated and sequenced, revealing only two small introns. The predicted amino acid sequence is more than 85% identical to ICL from other higher plants, and contains the C-terminal tripeptide Ser-Arg-Met which resembles a peroxisomal targeting sequence. The icl gene is coordinately expressed with the malate synthase (ms) gene after seed germination in both the light and the dark, suggesting that these genes may contain similar DNA elements regulating transcription. The start of transcription of the icl gene was determined and the DNA sequences upstream compared with the region of the ms gene promoter known to regulate transcription. This comparison revealed a highly conserved DNA sequence at similar positions in each gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 26 (1994), S. 423-434 
    ISSN: 1573-5028
    Keywords: cucumber ; Cucumis sativus ; germination ; gluconeogenesis ; phosphoenolpyruvate carboxykinase ; senescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA library from RNA of senescing cucumber cotyledons was screened for sequences also expressed in cotyledons during post-germinative growth. One clone encodes ATP-dependent phosphoenolpyruvate carboxykinase (PCK; EC 4.1.1.49), an enzyme of the gluconeogenic pathway. The sequence of a fulllength cDNA predicts a polypeptide of 74397 Da which is 43%, 49% and 57% identical to bacterial, trypanosome and yeast enzymes, respectively. The cDNA was expressed in Escherichia coli and antibodies raised against the resultant protein. The antibody recognises a single polypeptide of ca. 74 kDa, in extracts of cotyledons, leaves and roots. The cucumber genome contains a single pck gene. In the seven-day period after seed imbibition, PCK mRNA and protein steady-state levels increase in amount in cotyledons, peaking at days 2 and 3 respectively, and then decrease. Both accumulate again to a low level in senescing cotyledons. This pattern of gene expression is similar to that of isocitrate lyase (ICL) and malate synthase (MS). When green cotyledons are detached from seedlings and incubated in the dark, ICL and MS mRNAs increase rapidly in amount but PCK mRNA does not. Therefore it seems unlikely that the glyoxylate cycle serves primarily a gluconeogenic role in starved (detached) cotyledons, in contrast to post-germinative and senescing cotyledons where PCK, ICL and MS are coordinately synthesised. While exogenous sucrose greatly represses expression of icl and ms genes in dark-incubated cotyledons, it has a smaller effect on the level of PCK mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 29 (1995), S. 885-896 
    ISSN: 1573-5028
    Keywords: cucumber (Cucumis sativus L.) ; gene transcription ; germination ; glyoxylate cycle ; isocitrate lyase ; metabolic regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 6.5 kb cucumber genomic DNA fragment containing the icl gene was introduced into Nicotiana plumbaginifolia and shown to direct isocitrate lyase (ICL) mRNA synthesis in transgenic seedlings upon germination, in a temporally regulated manner. Two putative icl promoter fragments, of 2900 and 572 bp, were subsequently linked to the GUS reporter gene and introduced into N. plumbaginifolia. Both constructs directed GUS expression after transgenic seed germination, and although the 572 bp fragment gave only 1% of the activity of the 2900 bp fragment, it directed expression in the same cotyledon-specific and temporally regulated pattern. Seedlings were transferred to darkness after 18 days growth in the light, to induce a starvation response. The 2900 bp construct was activated by starvation and repressed by exogenous sucrose, whereas the 572 bp construct was not starvation-responsive. To localize the region of the 2900 bp promoter fragment which is responsible for regulation by sucrose, further deletions were make, linked to GUS, and assayed in a cucumber protoplast transient assay system. Constructs with promoters of 2900, 2142 and 1663 bp were activated by starvation and repressed by sucrose, but promoters of 1142 and 572 bp showed no such response. We conclude that the icl gene promoter contains at least two distinct cis-acting elements, one required for the response to sucrose and the other which participates in expression upon seed germination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 13 (1989), S. 673-684 
    ISSN: 1573-5028
    Keywords: malate synthase ; gene structure ; glyoxylate cycle ; glyoxysomes ; Cucumis sativus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complete sequences of a full-length cDNA clone and a genomic clone encoding the Cucumis sativus glyoxysomal enzyme malate synthase, have been determined. The sequences have enabled us to identify putative control regions at the 5′ end of the gene, three introns, and possible alternative polyadenylation sites at the 3′ end. The deduced amino acid sequence predicts a polypeptide of 64961 molecular weight, which has 48% identity with that of Escherichia coli. Comparison of the sequence of malate synthase from cucumber with that from E. coli and with other glyoxysomal and peroxisomal enzymes, shows that a conserved C-terminal tripeptide is a common feature of those enzymes imported into microbodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5028
    Keywords: cucumis sativus ; germination ; glyoxysome ; NAD-malate dehydrogenase ; peroxisome ; senescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length cDNA clone encoding microbody NAD+-dependent malate dehydrogenase (MDH) of cucumber has been isolated. The deduced amino acid sequence is 97% identical to glyoxysomal MDH (gMDH) of watermelon, including the amino terminal putative transit peptide. The cucumber genome contains only a single copy of this gene. Expression of this mdh gene increases dramatically in cotyledons during the few days immediately following seed imbibition, in parallel with genes encoding isocitrate lyase (ICL) and malate synthase (MS), two glyoxylate cycle enzymes. The level of MDH, ICL and MS mRNAs then declines, but then MDH mRNA increases again together with that of peroxisomal NAD+-dependent hydroxypyruvate reductase (HPR). The mdh gene is also expressed during cotyledon senescence, together with hpr, icl and ms genes. These results indicate that a single gene encodes MDH which functions in both glyoxysomes and peroxisomes. In contrast to icl and ms genes, expression of the mdh gene is not activated by incubating detached green cotyledons in the dark, nor is it affected by exogenous sucrose in the incubation medium. The function of this microbody MDH and the regulation of its synthesis are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-2048
    Keywords: Key words: Antisense inhibition ; D-enzyme ; Gluca‐notransferase ; Solanum tuberosum ; Starch meta-bolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Transgenic potato (Solanum tuberosum L.) plants were created with sense and antisense copies of the potato D-enzyme (disproportionating enzyme; EC␣2.4.1.25) cDNA linked to patatin and cauliflower mosaic virus 35 S promoters, and screened for D-enzyme activity in tubers. Transformants with sense constructs mostly had wild type D-enzyme activity but two plants had only about 1% wild-type activity. Transformants with antisense constructs had activity ranging from 90% to about 1% of wild type. Three 35 S antisense plants with very low activity were analysed in detail. Western blot analysis showed that D-enzyme was present in greatly reduced amounts in tubers and in leaves, whereas plastidic starch phosphorylase (EC 2.4.1.1) was unaffected. The lack of D-enzyme resulted in slow plant growth but development was otherwise apparently normal. Furthermore, the starch content of tubers was not appreciably altered in amount, proportion of amylose, molecular weight of debranched amylopectin, or branch chain length, despite the lack of D-enzyme. These results do not indicate a direct requirement for D-enzyme in the synthesis and accumulation of storage starch in tubers. The results are discussed in terms of the known reactions catalysed by D-enzyme and possible involvement of D-enzyme in starch metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...