Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    New York : Periodicals Archive Online (PAO)
    Economic studies. 1:2 (1896:June) 89 
    ISSN: 1932-7099
    Topics: Economics
    Notes: THE ADJUSTMENT OF WAGES TO EFFICIENCY THREE PAPERS ON
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 16 (1998), S. 189-196 
    ISSN: 0992-7689
    Keywords: Atmospheric composition and structure ; Middle atmosphere ; Thermosphere ; Transmission and scattering of radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Surveys in geophysics 7 (1985), S. 385-408 
    ISSN: 1573-0956
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Current knowledge of the atmospheres of Venus, Earth and Mars is reviewed, with emphasis on aspects where recent observational or theoretical work shows common processes at work. Selected problems of particular interest at the present time are described under the headings of composition, thermal structure, clouds, dynamics, weather and climate, and aeronomy. The overall problem remains the understanding of the origin and evolution of the planets, and the stability of their atmospheres and the surface environment or climate which they control. The latter depends on a complicated balance between radiative, dynamical and chemical processes which is only rather sketchily understood at present.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Current knowledge of the temperature structure of the atmosphere of Venus is briefly summarized. The principal features to be explained are the high surface temperature, the small horizontal temperature contrasts near the cloud tops in the presence of strong apparent motions, and the low value of the exospheric temperature. In order to understand the role of radiative and dynamical processes in maintaining the thermal balance of the atmosphere, a great deal of additional data on the global temperature structure, solar and thermal radiation fields, structure and optical properties of the clouds, and circulation of the atmosphere are needed. The ability of the Pioneer Venus Orbiter and Multiprobe Missions to provide these data is indicated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...