Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-9686
    Keywords: Mechanical heart valves ; Cavitation ; Nucleation ; Microbubble growth ; HITS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract This study was aimed at developing a physical model, supported by experimental observations, to describe the formation and growth of microbubbles seen in patients with mitral mechanical heart valves (MHV). This phenomenon, often referred to as high intensity transient signals (HITS), appears as bright, intense, high-velocity and persistent echoes detected by Doppler ultrasonography at the instant of closure. The long-term clinical implications of HITS has yet to be determined. However, there are reports of a certain degree of neurological disorder in patients with mitral MHV. The numerical analysis has shown the existence of a twofold process (1) nucleation and (2) microbubble growth as a result of cavitation. While mild growth of nuclei is governed by diffusion, explosive growth of microbubbles is controlled by pressure drop on the atrial side of mitral MHV. It was demonstrated that there exist limits on both microbubble size and regurgitant velocity, above which microbubbles grow explosively, and below which growth is almost nonexistent. Therefore, prevention of excessive pressure drops induced by high closing velocities related to the dynamics of closure of mitral MHV may offer design changes in the future generations of mechanical valves. © 1999 Biomedical Engineering Society. PAC99: 8763Df, 8710+e, 8719Uv, 8780Rb, 4755Dz, 8719La
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 23 (1977), S. 879-889 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two concepts concerning the deposition of particles from suspension onto a collector, the shadow effect due to deposited particles and the singular and random behavior of approaching particles, are presented and discussed. Based on these concepts, a new theory of particle deposition is proposed and procedures for the simulation of deposition process outlined. The simulation results give the rate of deposition and the deposit morphology. Potential applications of this model to a number of technical problems are outlined.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...