Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neuroendocrinology 5 (1993), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The neuropeptide oxytocin has long been known as a potent contractor of the uterus. However, it has remained difficult to attribute a definite role for neurohypophysial oxytocin in either the initiation or continuation of labour (1). Most recently, Lefebvre and colleagues (2) have suggested that oxytocin produced in the uterus, rather than in the hypothalamus, may be more important in parturition since at term the uterus of the rat contains 70-fold more mRNA for oxytocin than the hypothalamus, and this disappears at about the time of parturition. Despite the high levels of mRNA the uterus contains only nanogram quantities of immunoreactive oxytocin per gram wet weight at term (2), compared to microgram quantities present in the pituitary (3,4). Here we show that activation of the neurohypophysial oxytocin system occurs, as reflected by expression of immunoreactivity for Fos in the hypothalamic supraoptic nucleus, and that this activation is indeed critical for normal parturition, since its inhibition results in a significant prolongation of parturition. In addition, we present evidence that pulsatile delivery of oxytocin into the circulation is important for the efficient progress of parturition, indicating that a major role of the neuronal circuits regulating oxytocin secretion for parturition, as is already known for suckling, is to produce an appropriately patterned hormonal output for efficient biological action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 16 (2004), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neurotensin increases the firing rate of supraoptic nucleus oxytocin and vasopressin neurones in vitro and induces Fos protein expression in the supraoptic nucleus in vivo. Here, we used extracellular single-unit electrophysiological recording combined with local microdialysis administration of neurotensin (1 mM at 2 µl/min) to investigate the effects of locally applied neurotensin on the firing of oxytocin and vasopressin neurones in urethane-anaesthetized virgin and lactating rats. Neurotensin decreased the mean firing rate of oxytocin cells in virgin, but not lactating, rats. In addition, neurotensin increased the index of dispersion (a measure of the variability of firing) in virgin, but not lactating, rats. By contrast to oxytocin cells, neurotensin increased the mean firing rate of vasopressin cells in both virgin and lactating rats, but did not alter the index of dispersion. The increase in firing of phasic vasopressin cells was achieved through an increase in intraburst frequency (rather than an increase in burst duration or decrease in interburst interval), which resulted from a reduction of the spike-frequency adaptation that develops over the course of phasic bursts. Thus, neurotensin has differential effects on activity patterning in oxytocin and vasopressin cells and the effects on oxytocin cells, but not vasopressin cells, depend upon the physiological status of the animal. The increase in the variability of firing of oxytocin cells induced by neurotensin in virgin rats, but not in lactating rats, suggests that neurotensin (or other neurotransmitters/neuromodulators with similar actions) might establish conditions that predispose oxytocin cells to fire in milk-ejection bursts in lactating rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 16 (2004), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Here, we describe partial calibration of a parsimonious mathematical model of growth hormone (GH) secretion. From first principles, we derived a model of the effects on GH secretion from pituitary somatotrophs of stimulation by GH-releasing factor (GRF) or GH secretagogue, and of inhibition by somatostatin. We obtained a concise model by collapsing the many processes of the signal transduction cascade into a single step broadly reflecting the initial binding of GRF to its receptors. In the model, GH secretion is proportional to the rate of binding of GRF to activatable receptors. Desensitization occurs because of reduction of free receptors/available effector units, and resensitization occurs as those lost are replaced. This replacement is speeded up in the presence of somatostatin, which also inhibits GH secretion by reducing the constant of proportionality between the rate of GH secretion and the rate of GRF binding. We derived simple mathematical equations for the rate of GH secretion and cumulative secretion. Using these, we tested the model against data obtained from experiments performed in vitro, and made it quantitative using rigorous statistical approaches to optimize parameter estimates. The behaviour of the calibrated model matches experimental observations closely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Supraoptic nucleus oxytocin neurone activity and secretion are inhibited in late pregnancy and parturition by endogenous opioids. Here, we investigated alterations in the projections and gene expression of β-endorphin/pro-opiomelanocortin neurones in the arcuate nucleus in the pregnant rat. All regions of the arcuate nucleus were found to contain cells immunoreactive for β-endorphin fluorescent microbeads retrogradely transported from the supraoptic nucleus, and double-labelled neurones (β-endorphin plus microbeads), showing that β-endorphin neurones throughout the arcuate nucleus project to the supraoptic nucleus. There was an increase in the number of β-endorphin-immunoreactive cells in the arcuate nucleus and an increase in the density of β-endorphin fibres within the supraoptic nucleus and peri-supraoptic region in late pregnancy and parturition, suggesting enhanced expression of β-endorphin and increased β-endorphin innervation of the supraoptic nucleus. Pro-opiomelanocortin mRNA expression in the arcuate nucleus increased in late compared to early pregnancy: the number of positive neurones significantly increased in the caudal region. Fos expression (an indicator of neuronal activation) in the arcuate nucleus was colocalized in β-endorphin neurones in both proestrus and parturient rats, but the number of positive cells did not increase during parturition, suggesting lack of activation of β-endorphin neurones at birth. Thus, β-endorphin cells in the arcuate nucleus project to the supraoptic nucleus and increased innervation during pregnancy may explain the enhanced endogenous opioid inhibition of oxytocin neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 12 (2000), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: An endogenous κ-opioid agonist reduces the duration of phasic bursts in vasopressin cells. Non-synaptic post-spike depolarizing after-potentials underlie activity during bursts by increasing post-spike excitability and κ-receptor activation reduces depolarizing after-potential amplitude in vitro. To investigate the effects of κ-opioids on post-spike excitability in vivo, we analysed extracellular recordings of the spontaneous activity of identified supraoptic nucleus vasopressin cells in urethane-anaesthetized rats infused with Ringer's solution (n = 17) or the κ-agonist, U50,488H (2.5 µg/h at 0.5 µl/h; n = 23), into the supraoptic nucleus over 5 days. We plotted the mean hazard function for the interspike interval distributions as a measure of the post-spike excitability of these cells. Following each spike, the probability of another spike firing in vasopressin cells recorded from U50,488H infused nuclei was markedly reduced compared to Ringer's treated vasopressin cells. To determine whether U50,488H could reduce post-spike excitability in cells that displayed spontaneous phasic activity, we infused U50,488H (50 µg/h at 1 µl/h, i.c.v.), for 1–12 h while recording vasopressin cell activity. Nine of 10 vasopressin cells were silenced by i.c.v. U50,488H 15 ± 5 min into the infusion. Six cells exhibited spontaneous phasic activity before U50,488H infusion and recordings from three of these phasic cells were maintained until activity recovered; during U50,488H infusion, the activity of these three cells was irregular. Generation of the mean hazard function before and during U50,488H infusion revealed a reduction in post-spike excitability during U50,488H infusion. Thus, κ-receptor activation reduces post-spike excitability in vivo; this may reflect inhibition of depolarizing after-potentials and may thus underlie the reduction in burst duration of vasopressin cells caused by an endogenous κ-agonist in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neuroendocrinology 3 (1991), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Microdialysis sampling was used to measure noradrenaline, dopamine and serotonin release in the supraoptic and paraventricular nuclei of urethane-anaesthetized rats following intravenous injection of 20μg/kg cholecystokinin. This dose of cholecystokinin stimulates oxytocin release from the posterior pituitary, while slightly inhibiting vasopressin release. Dialysis probes were placed in the paraventricular nucleus, and into dorsal or ventral regions of the supraoptic nucleus. Samples were collected at 10-min intervals in each animal before, during and after two injections of cholecystokinin, and following a control injection of 0.9% NaCI. The injections of cholecystokinin stimulated significant increases in the concentrations of noradrenaline, dopamine and serotonin in the paraventricular nucleus and of noradrenaline and serotonin in the dorsal supraoptic nucleus region. Conversely, in the ventral supraoptic nucleus region a significant reduction in noradrenaline release was observed, but dopamine and serotonin concentrations were not significantly affected. The control injections did not alter noradrenaline, dopamine or serotonin release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Lactating rats show reduced oxytocin release compared with virgin female rats in response to a variety of stimuli, including stress and osmotic stimulation. We sought to establish whether this is a consequence of a reduced response in the oxytocin cells, or of a change in stimulus-secretion coupling at the level of the neurosecretory terminals in the neural lobe. Blood sampling experiments in anaesthetized rats showed that systemic administration of cholecystokinin resulted in significantly less oxytocin release in lactating rats than in virgin female rats. Electrophysiological recordings of single cells in the supraoptic nucleus, however, showed no difference in the responsiveness of oxytocin cells to this stimulus. Oxytocin release evoked by electrical stimulation or by depolarization with high potassium solutions was lower in isolated neural lobes from lactating rats than in glands from non-lactating rats, whereas evoked vasopressin release was similar in the two groups. The lactating rat neural lobes had a reduced oxytocin content: to study the consequences of depletion we compared hormone release evoked by electrical stimulation in vitro in neural lobes from normal male rats, and from male rats given 2% NaCI to drink for 2 or 4 days. Saline drinking resulted in a reduction in gland content of both oxytocin and vasopressin, and the evoked release of both hormones was also significantly reduced when expressed as a percentage of the gland content, as was also seen for oxytocin release for glands from lactating rats. Finally, measurement of the extracellular potassium response to stimulation of the isolated neural lobe as an index of the excitability of neural lobe neurosecretory axons was unchanged in lactating rats compared with virgin female rats. Together, the data indicate that reduced oxytocin release observed in lactating rats is a simple consequence of reduced oxytocin content in the neural lobe rather than of a reduced excitability of the oxytocin neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 17 (2005), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Here, we construct a mathematical model of the hypothalamic systems that control the secretion of growth hormone (GH). The work extends a recent model of the pituitary GH system, adding representations of the hypothalamic GH-releasing hormone (GHRH) and somatostatin neurones, each modelled as a single synchronised unit. An unpatterned stochastic input drives the GHRH neurones generating pulses of GHRH release that trigger GH pulses. Delayed feedback from GH results in increased somatostatin release, which inhibits both GH secretion and GHRH release, producing an overall pattern of 3-h pulses of GH secretion that is very similar to the secretory profile observed in male rats. Rather than directly stimulating somatostatin release, GH feedback triggers a priming effect, increasing releasable stores of somatostatin. Varying this priming effect to reduce the effect of GH can reproduce the less pulsatile form of GH release observed in the female rat. The model behaviour is tested by comparison with experimental observations with a range of different experimental protocols involving GHRH injections and somatostatin and GH infusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 16 (2004), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The pituitary response to luteinizing hormone-releasing hormone (LHRH) is steroid-dependent and varies throughout the reproductive cycle, but the rapid rise in pituitary sensitivity on the day of the ovulation-inducing LH surge is due to a ‘self-priming’ effect of exposure to LHRH that results in a potentiation of pituitary responsiveness 35–40 min later. The expression of this effect is itself steroid-dependent, and is most marked on pro-oestrus. Here, a model of LHRH-induced LH release was developed to incorporate the changes in pituitary sensitivity observed throughout the reproductive cycle. LH release is based on the Law of Mass Action, and a component related to self-priming is included in the model, incorporating the delay between initial exposure and potentiation of responsiveness and an upper maximum to the achievable level of priming. Where possible, model parameters were obtained from biological values, otherwise they were optimized to fit an experiment performed in vivo. These parameters were then used to test the model against other experimental data obtained both in vivo and in vitro. The model provided a good fit to the in vivo data but the in vitro experimental data required a change in one parameter, the upper limit of priming. We conclude that this model of the pituitary release mechanism can simulate the changes in pituitary responsiveness throughout the reproductive cycle. We suggest that substitution of this model in a previous model of the LHRH pulse generator could allow more appropriate tests of the LHRH pulse generator model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neuroendocrinology 14 (2002), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...