Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 1247-1251 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The particle and energy fluxes of electrons at the boundary of a plasma in contact with a perfectly absorbing plate are considered. In general, the fluxes are shown not to be determined by the plasma temperature and density at the plate but rather by a convolution of the plasma profiles in the vicinity of the plate. A simple empirical expression is proposed for the nonlocal fluxes, which approximately reproduces the results of a full kinetic calculation. The implications of this, to divertor plasmas near the neutralizer plate, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 741-749 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Temporal and spatial measurements of electron heat transport are made in the University of California Davis AURORA device (J. H. Rogers, Ph.D. dissertation, University of California, Davis, 1987). In AURORA, a microwave pulse heats a region of underdense, collisional, plasma (n/ncr (approximately-less-than)1, where ncr =1.8×1010 cm−3 is the critical density, Te0 ≈0.15 eV, and the electron scattering mean free path λ⊥(approximately-greater-than)2 cm). In this region, strong thermal heating (Tc (approximately-less-than)0.7 eV) as well as suprathermal heating (Th≈3 eV) is observed. The strong heating results in a steep temperature gradient that violates the approximations of classical heat diffusion theory (LT/λ⊥(approximately-greater-than)3 for thermal electrons, where LT=Tc(∂Tc/∂z)−1 is the cold electron temperature scale length. The time evolution of the electron temperature profile is measured using Langmuir probes. The measured relaxation of the temperature gradient after the microwave pulse is compared to calculations using the Fokker–Planck International code [Phys. Rev. Lett. 49, 1936 (1982)] and the multigroup, flux-limited, target design code lasnex [Comm. Plasma Phys. 2, 51 (1975)]. The electron distribution function at the end of the microwave pulse is used as initial conditions for both codes. The Fokker–Planck calculations are found to agree very well with the measurements. However, the flux-limited diffusion calculations do not agree with the measurements for any value of the flux limiter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...