Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 45 (1985), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A technique for studying the binding of La3+ to synaptosomes in a double-beam spectrophotometer, using murexide as indicator, is described. The binding of La3+ was very rapid and Scatchard plots revealed two components, with KD values of 0.6 and 27 μM in a Na+-free medium (sucrose medium) and 2.3 and 63 μM in an ionic medium containing 135 mM Na+. The binding of the cationic dye ruthenium red (RuR) showed only one site, with a KD of 3.7 μM. La3+ binding was partially inhibited by RuR and vice versa, and La3+ was also capable of partially displacing RuR previously bound to the synaptosomes, particularly in the sucrose medium. The release of labeled γ-aminobutyric acid (GABA) stimulated by K+ depolarization was inhibited by La3+ concentrations at or above 1 μM. in the ionic medium, whereas in the sucrose medium 2.5 μM or higher La3+ concentrations notably stimulated the spontaneous release of both GABA and glutamic acid. It is concluded that La3+ and RuR share at least one type of binding site, which is probably the high-affinity La3+ site. Since both La3+ and RuR at low concentrations have been shown to block the depolarization-induced Ca2+ entry in synaptosomes, this site might be related to the voltage-dependent Ca2+ entry involved in neurotransmitter release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ, is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 47 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The dependence of γ-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+ -free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60–70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner. These results are discussed in terms of a possible A23187-induced inward transport of RuR into the synaptosomes, which would result in an inhibition of the trapping of Ca2+ by intraterminal stores. It is concluded that Na + participates in the regulation of the permeability to Ca2+ in synaptosomes. The release of ACh requires an increase in the concentration of cytosolic Ca2+, whereas a large proportion of GABA can be released, in addition to this Ca2+ -dependent mechanism, by a different one that does not require this cation. The possibility that such mechanism is related to Na+ is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in γ-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37–48% inhibition of GAD activity in rat pups 2–5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The excitatory action of kainic and glutamic acids in chick whole retina was demonstrated as an immediate stimulation of the release of labeled γ-aminobutyric acid (GABA) and glycine in a superfusion system. This stimulatory effect was 3–10 times greater than that produced by a depolarizing K+ concentration; in addition, it was independent of Caz+ in the medium, but notably inhibited when Na+ was omitted from the medium. Under identical experimental conditions, neither kainic nor glutamic acid had any effect on the release of labeled dopamine or α-aminoisobutyric acid, thus indicating that their effect is not unspecific or due to cell damage. Similar although less marked stimulation of labeled GABA and glycine release by kainic acid was obtained in subcellular retinal fractions, particularly in fraction PI, which contained photoreceptor terminals and outer segments. This stimulation was also Ca2+ independent and greatly reduced when Na+ was omitted from the medium. It is suggested that the stimulation of GABA release by kainic and glutamic acids is probably due to a Na+-dependent, carrier-mediated mechanism that responds to the entry of Na+ produced by the interaction of glutamic and kainic acids with retinal membranes. In cortical or striatal slices from mouse brain, these acids had a negligible stimulatory effect on GABA and dopamine release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 42 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of EGTA on the release of labeled γ-aminobutyric acid (GABA), glutamate, acetylcholine, and dopamine was studied in superfused synaptosomes from mouse brain. In the absence of both Ca2+ and Mg2+, EGTA and also EDTA at 50 μM or higher concentrations induced a 2.5-5-fold stimulation of [3H]GABA release, similar to that produced by potassium depolarization, whereas only a slight effect, or no effect at all, was observed on the release of the other transmitters studied. The GABA-releasing action of EGTA was practically abolished in the presence of Mg2+. In contrast, the effect of EDTA was also observed when the medium contained Mg2+. Studies on the ionic dependence showed that the stimulation of GABA release by EGTA was abolished in a Na+-free medium. Li+ did not substitute Na+ for the EGTA effect, which was also independent of chloride. This Na+ dependence does not seem to involve voltage-sensitive channels, since tetrodotoxin did not affect the GABA-releasing action of EGTA, whereas in parallel su-perfusion chambers it blocked over 80% the stimulation of GABA release by veratridine. In contrast, two calcium channel blockers in synaptosomes, La3+ and the cationic dye ruthenium red, greatly inhibited the GABA-releasing effect of EGTA. L-2,4-Diaminobutyric acid, an inhibitor of the Na+-dependent GABA carrier, did not affect the releasing action of EGTA, whereas in a parallel experiment this drug inhibited by more than 90% the exchange of labeled GABA with unlabeled GABA. It is concluded that the Na+-dependent releasing action of EGTA and EDTA on GABA is probably due to a destabilization of the synaptosomal membrane by chelation of endogenous membranal Ca2+, which can be prevented by Mg2+. Such destabilization results in Na+ influx through Ca2+ channels, and the consequent increase in the intrater-minal Na+ concentration induces the release of GABA by a mechanism probably not involving the amino acid carrier. The possible participation of mitochondrial Na+ -Ca2+ exchange is considered improbable in view of the lack of effect of EGTA on the release of other neurotrans-mitters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Key words Dihydrokainate ; Kainate ; Hippocampal cell death ; MAP2 immunocytochemistry ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Neurotoxicity mediated by glutamate is thought to play a role in neurodegenerative disorders, and alterations in cytoskeletal proteins are possibly involved in the mechanisms of neuronal death occurring in Alzheimer’s disease. In the present work we studied the neurotoxic effects of the intrahippocampal injections of the glutamate transport inhibitor dihydrokainate as compared to those of kainate, as well as the concomitant changes in the microtubule-associated protein MAP2. Neuronal alterations were assessed at 3, 12, 24, and 48 h by Nissl staining and immunocytochemistry of MAP2. At 3 h, both compounds induced neuronal damage that was correlated with loss of dendritic MAP2 immunoreactivity. Neuronal damage was more evident at 12 h and 24 h after drug injection, and at these times an accumulation of MAP2 in the somata of pyramidal neurons was observed. The effects of dihydrokainate were restricted to the CA1 region and totally prevented by the N-methyl-d-aspartate receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), but not by the non-NMDA receptor antagonist 2,3-dihydro-6-nitro-7-sulphamoyl-benzo(f)-quinoxaline (NBQX). In contrast, kainate-induced alterations included CA1, CA3, and CA4 subfields, and the changes in CA1 were prevented by NBQX, while MK-801 was ineffective. These results suggest that early MAP2 disruption may be a marker of the excitotoxicity due to activation of different glutamate receptors located in discrete hippocampal regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1423-1430 
    ISSN: 1573-6903
    Keywords: Protein phosphatases ; okadaic acid ; neurodegeneration ; hippocampus ; ALZ-50 ; heat-shock proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Protein phosphorylation and dephosphorylation reactions, catalyzed by kinases and phosphatases, are involved in the regulation of a wide variety of physiological processes. In the nervous system, such reactions seem to modulate the function of several proteins crucial in synaptic transmission, including voltage-gated and ligand-gated channels, neurotransmitter release, and neurotransmitter transporters. On the other hand, hyperphosphorylation of certain cytoskeletal proteins or receptors may lead to neuronal death. In the present work we review the neurotoxic effect of okadaic acid (OKA), a potent and specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, as well as its action on synaptic function. We analyze recent findings demonstrating that the microinjection of OKA in rat hippocampus induces neuronal stress, hyperexcitation and neurodegeneration, and discuss their possible relationships to alterations of protein phosphorylation-dephosphorylation observed in Alzheimer's disease brain. These results suggest that protein hyperphosphorylation due to inhibition of phosphatases in vivo induces neuronal stress and subsequent neurodegeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6903
    Keywords: Kainic acid ; limbic seizures ; neurotransmitter release ; hippocampal slices
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The systemic injection of kainic acid (KA) has been shown to destroy neurons in the hippocampus and to induce limbic-type seizure activity. However, little is known on the neurochemical events that are associated with this convulsant effect. In the present work we studied the spontaneous and the K+-stimulated release of labeled τ-aminobutyric acid (GABA), glutamate, serotonin and dopamine, in hippocampal slices of KA-treated rats, at the moment of clinical seizures (2 h) and 72 h later. At the onset of convulsions we found a 40–45% decrease in the K+-stimulated release of GABA. The release of the other neurotransmitters was not significantly affected by KA treatment. After 72 h GABA release was still reduced by 30–40%. It is concluded that the epileptogenic effect of KA in the hippocampus is probably related to a diminished inhibitory GABAergic neurotransmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...