Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Microtubule-associated protein-2 (MAP-2) functions to maintain neuronal morphology by promoting the assembly of microtubules. MAP-2c is an alternately spliced form of MAP-2, containing the first 151 amino acids of high-molecular-weight (HMW) MAP-2 joined to the last 321 amino acids, eliminating 1,352 amino acids specific to HMW MAP-2. A polyclonal antibody generated to the splice site of human MAP-2c was used to determine its cellular localization. The MAP-2c antiserum was depleted of any HMW MAP-2 reactivity by absorption with HMW MAP-2 fusion protein. Western blot analysis of human fetal spinal cord homogenates demonstrated that the antibody is specific for human MAP-2c. MAP-2c immunoreactivity was found in the perinuclear cytoplasm and processes of anterior motor neurons and large processes of the posterior column in sections from 22–24-week human fetal spinal cord. Double-label confocal microscopy was performed using the MAP-2c polyclonal antibody and either a HMW MAP-2 or a neurofilament protein (highly phosphorylated 160- and 200-kDa protein) monoclonal antibody to identify these processes as dendrites or axons, respectively. HMW MAP-2 and MAP-2c colocalized in cell bodies and dendrites of anterior motor neurons, demonstrating for the first time the presence of native MAP-2c within dendrites. In addition, immunoelectron microscopy showed MAP-2c associated with microtubules in dendrites of motor neurons. MAP-2c and the neurofilament proteins were found in axons of the dorsal and ventral roots. The presence of MAP-2c within axons and dendrites suggests that MAP-2c contributes to neuronal plasticity during human fetal development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies in this and other laboratories have shown that interleukin-1β (IL-1β) is a selective and potent activator of human astrocytes with respect to induction of cytokines and hematopoietic growth factors. To study the effect of recombinant human IL-1β (rhIL-1β) on astrocyte morphology, glial fibrillary acidic protein (GFAP) and vimentin expression, and actin organization, we conducted a systematic survey using dissociated human fetal astrocyte cultures. Within hours of stimulation with IL-1β, the majority of astrocytes converted from flat, polygonal cells to small, contracted, highly branched cells. This change in morphology was more striking when serum was eliminated from the medium. Complete dissolution of filamentous actin occurred simultaneously with the change in cell shape, as demonstrated by fluorescein-phalloidin binding. These “activated” astrocytes displayed intense GFAP and vimentin immunoreactivity in the small perikarya and processes. In contrast, the large, flat astrocytes in control cultures showed diffuse pale immunoreactivity for GFAP and vimentin. To quantify the changes in GFAP and vimentin content with IL-1β stimulation, densitometric analyses of northern and western blots were performed. Northern blot analysis of IL-1β-stimulated astrocytes revealed a transient, marked decrease in steady-state levels of mRNA for GFAP, vimentin, and microtubule-associated protein 4. The decrease in mRNA levels was evident by 4–8 h and fell to the lowest level at 16–24 h (80–98% decrease by densitometry) with partial recovery by 72 h. By immunoblotting, a significant decrease in both GFAP and vimentin protein content was observed after IL-1β stimulation. Furthermore, metabolic labeling studies revealed an almost total loss of GFAP synthesis following stimulation with IL-1β for 16 h. These observations are consistent with the idea that increases in immunoreactivity were related to factors such as redistribution of epitope, rather than increases in total protein content. We hypothesize that in IL-1β-stimulated astrocytes, synthesis of other proteins, e.g., inflammatory cytokines, occurs at the expense of structural proteins and that the decrease in content of cytoskeletal proteins may reflect an “activated” state of astrocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ, is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous results from this laboratory have shown that tumor necrosis factor (TNF) is mitogenic for bovine astrocytes in chemically defined (CO) medium. The maximum mitogenic response was detected with 200 U/ml at 48 h. We have now extended these studies to assess the effect of TNF on message levels for the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. The results have shown that, whereas TNF had only a slight effect on vimentin mRNA, TNF induced a marked decrease to 4.3 ± 2.0% of controls in GFAP mRNA which was both time and dose dependent. The lowest effective dose was 50 U/ml and the maximal effective dose was 200 U/ml. Kinetic analysis of this response demonstrated that a marked decrease in GFAP mRNA was present at 12 h and continued to decrease through 72 h. To determine the reversibility of the TNF effect, astrocyte cultures were exposed to 200 U/ml TNF for varying periods of tee and then cultured in fresh CD medium. A 1-h pulse with TNF was sufficient to reduce GFAP mRNA levels when measured 24 h later. However, cultures incubated with 200 U/ml TNF for 48 h followed by incubation in CD medium without TNF for 7 days showed that GFAP mRNA levels had returned to 60% of the control values. Nuclear runoff assays showed that the effect of TNF on GFAP mRNA was at the posttranscriptional level. Polyacrylamide gel electrophoretic analysis of astrocyte cytoskeletal proteins demonstrated that GFAP levels were reduced after a 5-day incubation with 200 U/ml TNF whereas protein levels of vimentin and actin were not significantly changed. Western blots confirmed that GFAP levels were reduced to 36% of the control values. Thus the effect of TNF on GFAP mRNA expression was not due to a generalized effect on intermediate filament metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The brindled mouse (Mobr/y) carries an X-linked mutation that produces severe copper deficiency. Affected males suffer profound deficits in oxidative metabolism. We have examined astrocyte pathology in Mobr/y during development and have found marked changes in the metabolism of glial fibrillary acidic protein (GFAP). Immunocytochemistry with anti-GFAP antisera revealed a marked increase in staining at postnatal day 12 (P12), compared to heterozygous female and unaffected male littermates, particularly in neocortex and thalamus. Septum, hypothalamus, and striatum showed little change. Western blot analysis revealed increased levels of GFAP in Mobr/y forebrain and cerebellum. Levels of GFAP mRNA were determined by Northern blotting with a mouse GFAP cDNA probe. At P10, mRNA levels were normal, but increased to 8–10 times normal by P12. Levels at P15 remained similarly elevated. Thus, immunostaining and protein determinations correlate with mRNA elevations. Astrocytes can alter GFAP mRNA and protein levels over a relatively short time. Counts of neocortical cells did not reveal differences in cell numbers between Mobr/y and controls, indicating that the observed changes reflect increased cellular levels and not a large increase in the numbers of astrocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have previously shown that the content of glial fibrillary acidic protein (GFAP) gradually increases in the spinal cord of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE), reaching a level 1.5–2 times greater than that in controls by 35 days postimmunization (dpi). We report here that the increase in GFAP mRNA level followed a completely different time course and reached higher levels relative to controls than did that of the protein. Total RNA was isolated using a modified version of current methods using phenol/chloroform extractions to ensure optimal recovery from spinal cord. Control animals yielded 323 ± 35 μg (mean ± SD; n = 34) of total RNA/spinal cord throughout the experimental period. EAE animals contained up to three times as much total RNA during 11–14 dpi, a finding largely reflecting the infiltration of inflammatory cells. By 65 dpi, total RNA levels closely approached control values. As early as 10 dpi, increased amounts of GFAP mRNA were detected in EAE animals relative to controls. During 11–14 dpi, GFAP mRNA levels reached six- to eightfold greater than values in controls and then slowly declined throughout the remainder of the time course, with a fourfold increase still detected at 65 dpi. However, coinciding with the height of inflammation and clinical signs at 12 dpi, the GFAP mRNA content dropped to ∼50% of the level at 11 dpi but rose again at 13 dpi. This dip was mirrored by a similar decrease in neurofilament mRNA content, but otherwise the level of this message remained relatively constant and equal to that in controls. The changes in GFAP message content contrasted sharply with those in protein content, which increases slowly and does not reach maximal levels until after 4 weeks. Elevated levels of GFAP mRNA, protein, and immunostaining persisted through 65 dpi, 〉40 days after clinical signs had resolved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Three unique 5′ untranslated regions (UTRs) have been characterized for human microtubule-associated protein-2 (MAP-2) transcripts. All three UTRs shared a common 171-bp sequence adjacent to the MAP-2 coding region and then diverged upstream. The size of the unique upstream sequence was 281, 146, or 104 bp. PCR of genomic DNA demonstrated that the 5′ UTRs span multiple exons. The unique region of the UTRs recognizes a 9.5- and a 6-kb MAP-2 transcript in poly(A)+ mRNA isolated from human MSN cells, and PCR analysis demonstrated that each unique UTR is contained in multiple high- and low-molecular-weight MAP-2 transcripts. Reverse transcription-PCR (RT-PCR) performed on MSN mRNA isolated from polysomes demonstrated that all three of the UTRs contained within multiple MAP-2 transcripts were associated with polysomes and hence translated. RT-PCR from human fetal spinal cord and adult brain mRNA demonstrated that all of the UTRs are expressed at these developmental time points.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study we evaluated UCN-01, a small molecule that inhibits protein kinases by interacting with the ATP-binding site, as a potential anti-cancer agent for neuroblastoma. UCN-01 was effective at inducing apoptosis in six neuroblastoma cell lines with diverse cellular and genetic phenotypes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) assays, detection of active caspase-3 and cleaved poly ADP-ribose polymerase (PARP) confirmed that UCN-01 induced apoptosis. Cell cycle analysis determined that the UCN-01 treated cells accumulated in S phase by 16 h. Unlike vinblastine and docetaxel that increased survivin expression, UCN-01 treatment did not increase X-linked inhibitor of apoptosis protein (XIAP) and survivin levels. Analysis of specific phosphoepitopes on chk1/2, Akt, and GSK3β following UCN-01 treatment determined that there was no significant change in phospho-chk1/2. However, there was decreased immunoreactivity at Ser473 and Thr308 of Akt and Ser9 of GSK3β by 4 h indicating that the Akt survival pathway and downstream signalling was compromised. Thus, UCN-01 was effective at inducing apoptosis in neuroblastoma cell lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Survivin inhibits apoptosis during development and carcinogenesis and is absent in differentiated cells. To determine whether survivin inhibition induces cell death in neural tumor cells, survivin antisense oligonucleotides (SAO) were administered to a human neuroblastoma (MSN) and an oligodendroglioma (TC620) resulting in a dose-dependent reduction in survivin protein. Although 74% of the SAO-treated MSN cells were trypan blue+, PARP cleavage or activated caspase-3 was not observed. However nuclear translocation of AIF occurred and XIAP increased dramatically. Co-administration of z-Val-Ala-Asp(OMe)-fluoromethyl ketone (zVAD-fmk) with SAO did not inhibit cell death suggesting a caspase-independent mechanism of cell death. Propidium iodide (PI) staining revealed multiple large macronuclei with no apoptotic bodies supporting a role for survivin in cell division. By contrast, while 70% of the SAO-treated TC620 cells were trypan blue+, PARP was cleaved, cells were TUNEL+ and PI-staining revealed macronuclei and numerous apoptotic bodies. Co-treatment of the TC620 cells with SAO and zVAD-fmk blocked cell death. While no macronuclei or apoptotic bodies were observed there was a two-fold increase in metaphase cells. Our results suggest that survivin inhibition decreases the viability of human neural tumor cells and as a result of mitotic catastrophe, cell death can be initiated by either a classic apoptotic mechanism or a caspase-independent mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Elucidation of the mechanisms involved in the regeneration of oligodendrocytes and remyelination is a central issue in multiple sclerosis (MS) research. We recently identified a novel alternatively spliced, developmentally regulated oligodendrocyte-specific protein designated microtubule-associated protein-2+13 [microtubule-associated protein-2 expressing exon 13 (MAP-2+13)]. MAP-2+13 is expressed in human fetal oligodendrocytes during process extension and myelination but is minimally expressed in normal mature CNS. To test the hypothesis that MAP-2+13 is reexpressed in regenerating oligodendrocytes in MS lesions, we examined the brains of MS patients for the expression of this protein. By immunocytochemistry using a series of monoclonal antibodies specific for MAP-2+13, we determined that MAP-2+13 expression was up-regulated in all 31 lesions from 10 different MS brains. MAP-2+13 was expressed in regenerating oligodendrocytes associated with demyelinated lesions, with the highest counts found in regions of extensive remyelination. By electron microscopy, MAP-2+13 was localized to oligodendrocytes engaged in remyelination, evident by their process extension and association with thinly myelinated (remyelinated) and demyelinated axons. These results suggest a hitherto unsuspected role for this microtubule-associated protein in oligodendrocyte function during development and myelin repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...