Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 4 (1992), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Long-term potentiation (LTP) was studied in the hippocampal CA1 region of guinea-pigs using a solution containing 0.1 mM magnesium and 10 μM of the non-N-methyl-d-aspartate (non-NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), leaving an NMDA-mediated field excitatory postsynaptic potential (EPSP). Brief high-frequency afferent tetanization induced a substantial synapse-specific potentiation of the NMDA EPSP with a time course closely resembling that previously described for LTP of the non-NMDA-mediated EPSP. This NMDA EPSP potentiation was occluded by prior induction of LTP in normal solution. Using a solution containing 0.1 mM magnesium and 1 μM CNQX, the EPSP was composed of both a non-NMDA- and an NMDA-mediated component which could be measured separately and in parallel. Manipulations that cause increased transmitter release, such as phorbol ester application and changes in stimulation frequency, enhanced the two measures nearly equally. Afferent tetanization induced an increase of both EPSP components, with a similar time course, the NMDA component showing a relative increase of about one-third of that of the non-NMDA one. These results suggest that, to the extent that LTP is based on an increased release of transmitter, the mechanism exhibits features distinct from those underlying other forms of enhanced release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Extracellular adenosine is dramatically increased during cerebral ischaemia and is considered to be neuroprotective due to its inhibitory effect on synaptic transmission mediated by the adenosine A1 receptor (A1R). We investigated the importance of the A1R in a mouse model of global ischaemia and in a murine hippocampal slice culture model of in vitro ischaemia, using mice with the A1R gene deleted. In brains from mice lacking the A1R, damage induced by global ischaemia was similar to that in wild-type animals. In contrast, treatment with a selective A1R antagonist [8-cyclo-pentyl theophylline (8-CPT)], administered before the ischaemic insult in naive wild-type mice, exacerbated the neuronal damage following global ischaemia. Although the inhibitory action of adenosine on excitatory neurotransmission in hippocampal slices was lost in A1R knockout mice, there was no difference in damage between slices from wild-type and knockout mice after in vitro ischaemia. The results suggest that some effects of the A1R are compensated for in knockout animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neurotrophins modulate synaptic transmission and plasticity in the adult brain. We here show a novel feature of this synaptic modulation, i.e. that two populations of excitatory synaptic connections to granule cells in the dentate gyrus, lateral perforant path (LPP) and medial perforant path (MPP), are differentially influenced by the neurotrophins BDNF and NT-3. Using field recordings and whole-cell patch-clamp recordings in hippocampal slices, we found that paired-pulse (PP) depression at MPP–granule cell synapses was impaired in BDNF knock-out (+/–) mice, but PP facilitation at LPP synapses to the same cells was not impaired. In accordance, scavenging of endogenous BDNF with TrkB–IgG fusion protein also impaired PP depression at MPP–granule cell synapses, but not PP facilitation at LPP–granule cell synapses. Conversely, in NT-3+/– mice, PP facilitation was impaired at LPP–granule cell synapses whilst PP depression at MPP–granule cell synapses was unaffected. These deficits could be reversed by application of exogenous neurotrophins in an afferent-specific manner. Our data suggest that BDNF and NT-3 differentially regulate the synaptic impact of different afferent inputs onto single target neurons in the CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...