Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0843
    Keywords: Key words Capecitabine ; Pharmacokinetic interaction ; Maalox ; 5-Fluorouracil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: In the present study the possible influence of the antacid Maalox on the pharmacokinetics of capecitabine (Xeloda) and its metabolites was investigated in cancer patients. Methods: A total of 12 patients with solid, predominantly metastatic tumors of various origin received a single oral dose of 1250 mg/m2 of capecitabine (treatment A), a single oral dose of 1250 mg/m2 of capecitabine followed immediately by 20 ml of Maalox (treatment B), and a single oral dose of 1250 mg/m2 of capecitabine followed 2 h later by 20 ml of Maalox (treatment C) in an open, randomized, three-way cross over fashion. Serial blood and urine samples were collected for up to 24 h after each administration. Unchanged capecitabine and its metabolites were analyzed in plasma using liquid chromatography/mass spectrometry and in urine using nuclear magnetic resonance spectroscopy. Results: Administration of Maalox either concomitantly with capecitabine or delayed by 2 h did not influence the time to peak plasma concentrations (Cmax) or the elimination half-lives of capecitabine and its metabolites. Unexpectedly, moderate increases in the Cmax and AUC0–∞ values obtained for capecitabine and 5′-deoxy-5-fluorocytidine were observed when Maalox was given together with capecitabine. However, these increases, which ranged between 10% and 31%, were not statistically significant (P 〉 0.05) and are not of clinical significance. There was no indication of consistent changes in the plasma concentrations of the other metabolites 5′-deoxy-5′-fluorouridine (5′-DFUR), 5-fluorouracil, and α-fluoro-β-alanine. The Cmax and AUC0–∞ values recorded for these three metabolites increased and decreased in a stochastic manner. The magnitude of these changes was low (〈13%) and not statistically significant. The primary statistical analysis of the AUC0–∞obtained for 5′-DFUR provided a P value of 0.4524 and clearly indicated no significant difference between the treatments. The addition of Maalox had no influence on the overall urinary recovery or the proportion of the dose recovered as capecitabine or its metabolites from urine. Conclusion: At the dose used in this study, the effect of concomitantly delivered Maalox on the extent and rate of gastrointestinal absorption of capecitabine is not clinically significant. Therefore, there is no need to adjust the dose or timing of capecitabine administration in patients treated with Maalox.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0843
    Keywords: Key words Capecitabine ; Bioequivalence ; Pharmacokinetics ; 5-FU
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: The objective of the study was to assess the bioequivalence of two tablet formulations of capecitabine and to explore the effect of age, gender, body surface area and creatinine clearance on the systemic exposure to capecitabine and its metabolites. Methods: The study was designed as an open, randomized two-way crossover trial. A single oral dose of 2000 mg capecitabine was administered on two separate days to 25 patients with solid tumors. On one day, the patients received four 500-mg tablets of formulation B (test formulation) and on the other day, four 500-mg tablets of formulation A (reference formulation). The washout period between the two administrations was between 2 and 8 days. After each administration, serial blood and urine samples were collected for up to 12 and 24 h, respectively. Unchanged capecitabine and its metabolites were determined in plasma using LC/MS-MS and in urine by NMRS. Results: Based on the primary pharmacokinetic parameter, AUC0–∞ of 5′-DFUR, equivalence was concluded for the two formulations, since the 90% confidence interval of the estimate of formulation B relative to formulation A of 97% to 107% was within the acceptance region 80% to 125%. There was no clinically significant difference between the tmax for the two formulations (median 2.1 versus 2.0 h). The estimate for Cmax was 111% for formulation B compared to formulation A and the 90% confidence interval of 95% to 136% was within the reference region 70% to 143%. Overall, these results suggest no relevant difference between the two formulations regarding the extent to which 5′-DFUR reached the systemic circulation and the rate at which 5′-DFUR appeared in the systemic circulation. The overall urinary excretions were 86.0% and 86.5% of the dose, respectively, and the proportion recovered as each metabolite was similar for the two formulations. The majority of the dose was excreted as FBAL (61.5% and 60.3%), all other chemical species making a minor contribution. Univariate and multivariate regression analysis to explore the influence of age, gender, body surface area and creatinine clearance on the log-transformed pharmacokinetic parameters AUC0–∞ and Cmax of capecitabine and its metabolites revealed no clinically significant effects. The only statistically significant results were obtained for AUC0–∞ and Cmax of intact drug and for Cmax of FBAL, which were higher in females than in males. Conclusion: The bioavailability of 5′-DFUR in the systemic circulation was practically identical after administration of the two tablet formulations. Therefore, the two formulations can be regarded as bioequivalent. The variables investigated (age, gender, body surface area, and creatinine clearance) had no clinically significant effect on the pharmacokinetics of capecitabine or its metabolites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0843
    Keywords: Key words Capecitabine ; Pharmacokinetics ; Preferential activation ; Colorectal cancer ; 5-FU
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: Capecitabine (Xeloda) is a novel fluoropyrimidine carbamate rationally designed to generate 5-fluorouracil (5-FU) preferentially in tumors. The purpose of this study was to demonstrate the preferential activation of capecitabine, after oral administration, in tumor in colorectal cancer patients, by the comparison of 5-FU concentrations in tumor tissues, healthy tissues and plasma. Methods: Nineteen patients requiring surgical resection of primary tumor and/or liver metastases received 1,255 mg/m2 of capecitabine twice daily p.o. for 5–7 days prior to surgery. On the day of surgery, samples of tumor tissue, adjacent healthy tissue and blood samples were collected simultaneously from each patient, 2 to 12 h after the last dose of capecitabine had been administered. Concentrations of 5-FU in various tissues and plasma were determined by HPLC. The activities of the enzymes (CD, TP and DPD) involved in the formation and catabolism of 5-FU were measured in tissue homogenates, by catabolic assays. Results: The ratio of 5-FU concentrations in tumor to adjacent healthy tissue (T/H) was used as the primary marker for the preferential activation of capecitabine in tumor. In primary colorectal tumors, the concentration of 5-FU was on average 3.2 times higher than in adjacent healthy tissue (P=0.002). The mean liver metastasis/healthy tissue 5-FU concentration ratio was 1.4 (P=0.49, not statistically different). The mean tissue/plasma 5-FU concentration ratios exceeded 20 for colorectal tumor and ranged from 8 to 10 for other tissues. Conclusions: The results demonstrated the preferential activation of capecitabine to 5-FU in colorectal tumor, after oral administration to patients. This is explained to a great extent by the activity of TP in colorectal tumor tissue, (the enzyme responsible for the conversion of 5′-DFUR to 5-FU), which is approximately four times that in adjacent healthy tissue. In the liver, TP activity is approximately equal in metastatic and healthy tissue, which explains the lack of preferential activation of capecitabine in these tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...