Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0851
    Keywords: Key words B-cell non-Hodgkin’s lymphoma ; Radioimmunodetection ; Radioimmunotherapy ; Anti-CD22 monoclonal antibody ; Internalization ; Radioactive metals ; Residualizing iodine label
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  LL2 is an anti-CD22 pan-B-cell monoclonal antibody which, when radiolabeled, has a high sensitivity for detecting B-cell, non-Hodgkin’s lymphoma (NHL), as well as an antitumor efficacy in therapeutic applications. The aim of this study was to determine whether intracellularly retained radiolabels have an advantage in the diagnosis and therapy of lymphoma with LL2. In vitro studies showed that iodinated LL2 is intracellularly catabolized, with a rapid release of the radioiodine from the cell. In contrast, residualizing radiolabels, such as radioactive metals, are retained intracellularly for substantially longer. In vivo studies were performed using LL2-labeled with radioiodine by a non-residualizing (chloramine-T) or a residualizing method (dilactitol-tyramine, DLT), or with a radioactive metal (111In). The biodistribution of a mixture of 125I (non-residualizing chloramine-T compared to residualizing DLT), 111In-labeled LL2 murine IgG2a or its fragments [F(ab′)2, Fab′], as well as its humanized, CDR-grafted form, was studied in nude mice bearing the RL human B-cell NHL cell line. Radiation doses were calculated from the biodistribution data according to the Medical International Radiation Dose scheme to assess the potential advantage for therapeutic applications. At all assay times, tumor uptake was higher with the residualizing labels (i.e., 111In and DLT-125I) than with the non-residualizing iodine label. For example, tumor/blood ratios of 111In-labeled IgG were 3.2-, 3.5- and 2.8-fold higher than for non-residualizing iodinated IgG on days 3, 7 and 14, respectively. Similar results were obtained for DLT-labeled IgG and fragments with residualized radiolabels. Tumor/organ ratios also were higher with residualizing labels. No significant differences in tumor, blood and organ uptake were observed between murine and humanized LL2. The conventionally iodinated anti-CD20 antibody, 1F5, had tumor uptake values comparable to those of iodinated LL2, the uptake of both antibodies being strongly dependent on tumor size. These data suggest that, with internalizing antibodies such as LL2, labeling with intracellularly retained isotopes has an advantage over released ones, which justifies further clinical trials with residualizing 111In-labeled LL2 for diagnosis, and residualizing 131I and 90Y labels for therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-7089
    Keywords: Medullary thyroid cancer ; Somatostatin receptor scintigraphy ; Indium-111 pentetreotide ; Occult metastatic disease ; Mediastinal lymph node metastases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In medullary thyroid cancer (MTC), post-surgically elevated plasma calcitonin and/or carcinoembryonic antigen levels frequently indicate persisting metastatic disease, although conventional diagnostic procedures fail to localize the responsible lesions (occult disease). Somatostatin analogues have been used successfully in disease localization, but recently concerns have been raised that increased thoracic uptake of indium-111 pentetreotide in patients with previous external beam irradiation may represent a false-positive finding, caused by post-irradiation pulmonary fibrosis. We recently examined seven patients with metastatic MTC by somatostatin receptor scintigraphy (six with occult and one with established disease). In four patients, all of whom had stable or slowly rising tumour marker levels over several years, a chimney-like bilateral mediastinal uptake of indium-111 penetreotide was found. In two patients with persisting hypercalcitonaemia immediately after primary surgery, supraclavicular lymph node metastases were identified as the responsible lesions. None of these seven patients had prior external beam radiation therapy. In two cases, histological confirmation was obtained. In one patient, disease progression could be shown during follow-up. These data suggest that bilateral mediastinal lymph node involvement is a typical site of disease in slowly progressing occult metastatic MTC; the “chimney sign” may represent a typical finding with somatostatin analogues in such cases. Therefore, we believe that even in the case of prior external beam irradiation, mediastinal uptake of octreotide might represent metastatic MTC rather than radiation fibrosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Key words: Renal uptake ; Radiation nephrotoxicity ; Cationic amino acids ; Lysine ; Antibody fragments ; Peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Elevated renal uptake and prolonged retention of radiolabeled antibody fragments and peptides is a problem in the therapeutic application of such agents. Over recent years, one of the focuses of research has therefore been to develop suitable methods to reduce this renal uptake, and to evaluate whether the resulting methodology will benefit therapy with antibody fragments and peptides. In these studies it has been shown that the kidney uptake of antibody fragments in animals can be reduced in a dose-dependent manner by almost one order of magnitude by the systemic administration of cationic amino acids and their derivatives, whereas the uptake in all other organs, as well as the tumor, remains unaffected. A similar reduction in renal retention is achieved for all intracellularly retained radionuclides (e.g., radiometals) or radioiodinated immunoconjugates, as well as for smaller peptides. Lysine is usually the preferred agent, and its d- and l-isomers are equally effective whether given intraperitoneally or orally. Amino sugars are effective, but their N-acetyl derivatives, lacking the positive charge, are not. Basic polypeptides are also effective, and their potency increases with increasing molecular weight (i.e., the amount of positive charges per molecule). Urine analysis of treated individuals shows the excretion of unmetabolized, intact fragments or peptides, in contrast to mostly low-molecular-weight metabolites in untreated controls. In therapy studies using radiometal-conjugated Fab fragments, the kidney is the first dose-limiting organ. Administration of cationic amino acids results in a substantial increase in the maximum tolerated dose of such Fab fragments. No biochemical or histological evidence of renal damage has been observed under these conditions. As was the case in animal studies, in pilot clinical trials the renal uptake in patients injected with Fab′ fragments and given amino acids could be decreased significantly, whereas the uptake by all other organs remained unaffected. These recent studies indicate that a variety of basic compounds are capable of inhibiting the tubular reabsorption of peptides and proteins, thus significantly lowering the renal uptake of antibody fragments or peptides in both animals and patients. On a molecular basis, the effect seems to rely essentially on the presence of a positively charged amino group. Thus, radiation nephrotoxicity of antibody fragments and peptides can be overcome successfully; this may provide new prospects for cancer therapy with radiolabeled antibody fragments and peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1619-7089
    Keywords: Key words: Cholecystokinin-B receptor ; Gastrin ; Medullary thyroid cancer ; Small cell lung cancer ; Peptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The outstanding sensitivity of pentagastrin in detecting the presence of primary, recurrent or metastatic medullary thyroid cancer (MTC) suggests widespread expression of the corresponding receptor type in human MTC. Indeed, recent autoradiographic studies have demonstrated the presence of cholecystokinin (CCK)-B (= gastrin) receptors not only in more than 90% of MTCs but also in a high percentage of small cell lung cancers, stromal ovarian cancers, astrocytomas and several other tumour types. The aim of this study was to evaluate whether radiolabelled gastrin may be suitable for targeting CCK-B receptor-expressing tumours in vivo. For this purpose, the biodistribution of the radioiodinated human heptadecapeptide gastrin-I was studied in nude mice bearing subcutaneous xenografts of the human MTC cell line, TT. Initial therapy experiments were undertaken. Finally, the biodistribution of iodine-131- labelled gastrin-I was studied in a patient with metastatic MTC. At a peptide amount of approximately 1 μg, maximum tumour uptake (8.9±2.9%ID/g) was observed in animals at 1 h post injection, with tumour-to-blood ratios as high as 6.3±1.9. Physiological CCK-B receptors in the stomach, gallbladder and pancreas of the mice were targeted as well. The major route of excretion was renal, but strong evidence for a biliary excretion pathway also exists. Pilot therapy studies with 131I-labelled gastrin showed significant anti-tumour efficacy as compared with untreated controls. In accordance with the preclinical data, good receptor targeting was observed in the tumour sites, stomach, gallbladder and pancreas of a patient with metastatic MTC. These data suggest that gastrin and its analogues may represent a useful new class of receptor binding peptides for diagnosis and therapy of a variety of tumour types, including MTC and small cell lung cancer. Future preclinical and clinical studies will address in more detail the molecular features that render CCK-B receptor binding agents potentially useful candidates for in vivo scintigraphy and radionuclide therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1619-7089
    Keywords: Key words: Radioimmunotherapy ; Internalizing monoclonal antibody ; Auger/conversion electron emitter ; Radiometal ; Indium-111 ; Yttrium-90
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Recent studies suggest a higher anti-tumour efficacy of internalizing monoclonal antibodies (MAbs) when labelled with Auger electron emitters, as compared with β-emitters. The aim of this study was to compare the anti-tumour efficacy and toxicity of the internalizing MAb, CO17-1A, labelled with Auger electron emitters (125I, 111In) versus conventional β–-emitters (131I, 90Y) in a colon cancer model, and to assess whether the residualizing radiometals may have therapeutic advantages over the conventionally iodinated conjugates. Biodistribution studies of 125I-, 111In- or 88Y-labelled CO17-1A were performed in nude mice bearing subcutaneous human colon cancer xenografts. For therapy, the mice were injected with either unlabelled or 125I-, 131I-, 111In- or 90Y-labelled CO17-1A IgG2a, whereas control groups were left untreated or were given a radiolabelled isotype-matched irrelevant antibody. The influence of internalization was assessed by comparing the results with those obtained with an anti-carcinoembryonic antigen (CEA) antibody which does not internalize to a relevant extent. The maximum tolerated activities (MTA) and doses (MTD) of each agent were determined. Myelotoxicity and potential second-organ toxicities, as well as tumour growth, were monitored. Bone marrow transplantation (BMT) was performed in order to enable dose intensification. Radiometals showed significantly better tumour-to-blood ratios than the respective iodinated conjugates. The MTAs of 131I- and 125I-CO17-1A without artificial support were 11.1 MBq (300 µCi) and 111 MBq (3 mCi), respectively; the MTA of the metals was reached at 4 MBq (100 µCi) for 90Y-, and at 85 MBq (2.3 mCi) for 111In-CO17-1A. Myelotoxicity was dose limiting in all cases. BMT enabled an increase in the MTA to 15 MBq (400 µCi) of 131I-labelled CO17-1A, to 4.4 MBq (120 µCi) of 90Y-labelled CO17-1A, and to 118 MBq (3.2 mCi) of 111In-labelled CO17-1A, while the MTA of 125I-CO17-1A had not been reached at 185 MBq (5 mCi) with BMT. Whereas no significant therapeutic effects were seen with unlabelled CO17-1A, tumour growth was retarded significantly with its radiolabelled forms. The therapeutic results were significantly (P〈0.01) better with both Auger electron emitters (125I and 111In) than with the β-emitters, and, in accordance with the biodistribution data, a trend towards better therapeutic results was found with radiometals (more complete remissions) as compared with radioiodine. In contrast, at equitoxic doses, no significant difference was observed in the therapeutic efficacy of 131I- versus 125I-labelled non-internalizing anti-CEA antibody, F023C5. These data suggest that, at equitoxic doses, the therapeutic efficacy of internalizing MAbs labelled with Auger electron emitters, such as 125I or 111In, is superior to that of internalizing MAbs labelled with conventional β-emitters. The lower toxicity of Auger electron emitters may be due to the short path length of their low-energy electrons, which can reach the nuclear DNA only if the antibody is internalized (as is the case in antigen-expressing tumour tissue, but not in the stem cells of the red marrow).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...