Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Mantle dentin matrix ; Electron spectroscopic imaging (ESI)-analysis ; Calcium ; Phosphorus ; Dentinogenesis ; Biomineralization ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The subcellular distribution of the inorganic elements calcium (Ca) and phosphorus (P) was studied in the first-formed dentin matrix during initial mineralization in neonatal rat molars. This most peripheral matrix region is comprised of a proteoglycan-rich ground substance, interwoven by a collagenous network, matrix vesicles, aperiodic fibrils derived from the dental basal lamina, and apical odontoblastic cell processes. All matrix components may possibly serve as templets for mineral deposition during initial calcification of first-formed mantle dentin and predentin. By means of the very sensitive ESI-analysis we studied the subcellular localization of Ca and P and their possible association with distinct organic extracellular matrix components and odontoblasts. Ca-signals were found in the ground substance, at striated collagen fibrils and plasma membranes of odontoblasts in the cuspal early matrix region, but occurred only sparsely in the ground substance of the more distal matrix region where odontoblast processes attach to aperiodic fibrils of the dental basal lamina. Ca was generally absent in matrix vesicles. In contrast, P-signals were found in matrix vesicles, at aperiodic fibrils and at the plasma membranes of odontoblasts. Ca and P co-localized at striated collagen fibrils (type I or II). These results suggest that striated collagen fibrils might serve as primary deposition sites for calcium phosphate during early biological calcification of organic extracellular macromolecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 292 (1998), S. 293-302 
    ISSN: 1432-0878
    Keywords: Key words NOS isoforms I-III ; NADPH diaphorase ; Western blot analysis ; Dystrophin complex ; Muscle development ; Myogenic cultures ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for NO in muscle biology. However, the expression and subcellular localization of NOS in muscle development and myoblast differentiation are largely unknown. In the present study, NOS was immunolocalized with isoform-specific antibodies in developing muscle and in differentiated myoblast cultures (mouse C2C12) together with histochemical NADPH-dependent diaphorase activity that is blocked by specific NOS inhibitors and therefore designated as NOS-associated diaphorase activity (NOSaD). Western blot analysis revealed immunoreactive bands for NOS-I-III in lysates from perinatal and adult muscle tissue and C2C12-myotubes that comigrated with prototypical proteins. In embryonic skeletal muscle, but not in adult myofibers, diffuse cytosolic staining and lack of sarcolemmal NOSaD activity and NOS-I immunoreaction were evident. In both myoblasts and fusioned myotubes, NOSaD and NOS isoforms I-III colocalize in the cytosol. Additionally, members of the sarcolemmal dystrophin-glycoprotein complex (i.e., dystrophin, adhalin, β1-dystroglycan) immunolocalize in the cytosol of differentiating myoblasts, whereas anti-dystrophin and anti-β1-dystroglycan clearly delineate the sarcolemma in myotubes. Thus, expression of NOS isoforms I-III and NOSaD is cytosolic in fusion-competent myoblasts during myotube formation in vitro. Interaction of NOSaD/NOS-I with the sarcolemmal dystrophin-complex known from mature myofibers is apparently lacking in prenatal muscle development and differentiating myoblasts. Localization of NOS isoforms thus characterized in myogenic cultures may help further to investigate regulated NO formation in muscle cells in vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...