Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Native horseradish peroxidase (HRP) and the lectin wheat germ agglutinin (WGA) conjugated to HRP are protein probes represented in the blood-brain barrier (BBB) literature for elucidating morphological routes of passage between blood and brain. We report the application of established pharmacokinetic methods, e.g., multiple-time regression analysis and capillary depletion technique, to measure and compare bidirectional rates of passage between blood and brain for radioactive iodine-labeled HRP (I-HRP), WGA-HRP (I-WGA-HRP), and the serum protein albumin (I-ALB) following administration of the probes intravenously (i.v.) or by intracerebroventricular (i.c.v.) injection in mice. The pharmacokinetic data are supplemented with light and electron microscopic analyses of HRP and WGA-HRP delivered i.v. or by i.c.v. injection. The rates of bidirectional movement between blood and brain are the same for coinjected I-HRP and I-ALB. Blood-borne HRP, unlike WGA-HRP, has unimpeded access to the CNS extracellularly through sites deficient in a BBB, such as the circumventricular organs and subarachnoid space/pial surface. Nevertheless, blood-borne I-WGA-HRP enters the brain ˜10 times more rapidly than I-HRP and I-ALB. Separation of blood vessels from the neocortical parenchyma confirms the entry of blood-borne I-WGA-HRP to the brain and sequestration of I-WGA-HRP by cerebral endothelial cells. Nearly half the I-WGA-HRP radioactivity associated with cortical vessels is judged to be subcellular. Light microscopic results suggest the extracellular pathways into the brain available to blood-borne native HRP do not represent predominant routes of entry for blood-borne WGA-HRP. Ultrastructural analysis further suggests WGA-HRP is likely to undergo adsorptive transcytosis through cerebral endothelia from blood to brain via specific subcellular compartments within the endothelium. Entry of blood-borne I-WGA-HRP, but not of I-ALB, is stimulated with coinjected unlabeled WGA-HRP, suggesting the latter may enhance the adsorptive endocytosis of blood-borne I-WGA-HRP. With i.c.v. coinjection of I-WGA-HRP and I-ALB, I-WGA-HRP exits the brain more slowly than I-ALB. The brain to blood passage of I-WGA-HRP is nil with inclusion of unlabeled WGA-HRP, which does not alter the exit of I-ALB. Adsorptive endocytosis of i.c.v. injected WGA-HRP appears restricted largely to cells lining the ventricular cavities, e.g., ependymal and choroid plexus epithelia. In summary, the data suggest that the bidirectional rates of passage between brain and blood for native HRP are comparable to those for albumin. Blood-borne WGA-HRP is assessed to enter the brain more rapidly than native HRP and albumin, perhaps by the process of adsorptive transcytosis through BBB endothelia, but has difficulty leaving the CNS; the latter result may be due to avid binding and adsorptive endocytosis of WGA-HRP by exposed CNS cells. Neither native HRP nor WGA-HRP alters the integrity of the BBB to albumin. For this reason, both native HRP and WGA-HRP are suitable probes for investigating the permeability of the BBB to macromolecules in vivo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of neurocytology 16 (1987), S. 721-735 
    ISSN: 1573-7381
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The contribution of tubular profiles within the mammalian cerebral endothelium to the formation of transcellular channels was analysed following exposure of the endothelium to native horseradish peroxidase (HRP) dissolved in saline or dimethyl sulphoxide (DMSO) administered intravenously in mice. Within 5–15 min, but not at 30 min to 2h postinjection, peroxidase-positive extravasations were evident within the parenchyma of the forebrain and brainstem of mice exposed and not exposed to DMSO. The extravasations may be associated with the rupture of interendothelial tight junctions at the level of arterioles as a consequence of the perfusion-fixation process. Ultrastructural inspection of endothelia within and away from areas of peroxidase extravasation revealed the following intraendothelial, peroxidase-positive organelles: presumptive endocytic vesicles, endosomes (a prelysosomal compartment), multivesicular and dense bodies, and tubular profiles. Statistical analysis of the concentration of HRP-labelled presumptive endocytic vesicles, which may coalesce to form tubules, within endothelia from mice injected intravenously with HRP-DMSO compared to mice receiving HRP-saline revealed no significant difference. HRP-positive tubular profiles were blunt-ended, variable in length and width, and appeared free in the cytoplasm or in continuity with dense bodies. Labelled tubules free in the cytoplasm were positioned parallel to the luminal and abluminal plasma membranes and were less frequently oblique or perpendicular to these membranes. Tubular profiles analysed in serial thin sections or with a goniometer tilt stage did not establish membrane continuities with the luminal and abluminal plasma membranes. Peroxidase-positive tubular profiles were similar morphologically to those exhibiting acid hydrolase activity but did not share morphological and enzyme cytochemical similarities with the endoplasmic reticulum that stained for glucose-6-phosphatase (G6Pase) activity. G6Pase-positive profiles of endoplasmic reticulum were not observed to contribute to a transendothelial canalicular network. Our results suggest that: (i) peroxidase-labelled tubules, acid hydrolase-positive tubules, and G6Pase-positive endoplasmic reticulum do not form transcellular channels through the cerebral endothelium; (ii) tubular profiles labelled with blood-borne HRP in the cerebral endothelium are associated with the eridosome apparatus and/or the lysosomal system of organelles; and (iii) DMSO does not appear to alter the permeability of the blood-brain barrier to blood-borne protein.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-7381
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Intracellular glycogen and glucose-6-phosphatase (G6Pase) activity were identified cytochemically within epithelia of the choroid plexus and ependyma of the cerebral ventricles including the median eminence and area postrema, the cerebral endothelium and pericytes from control, salt-stressed and fasted adult mice. Identification of glycogen was obtained by employing osmium tetroxide-potassium ferrocyanide and the periodic acid-thiocarbohydrazide-silver protein technique as ultrastructural contrast stains. A lead-capture method was used to localize G6Pase activity with glucose-6-phosphate or mannose-6-phosphate as substrate. Cerebral G6Pase functions predominantly as a phosphohydrolase to convert glucose-6-phosphate to glucose. Some glucose-6-phosphatein vivo may be derived from the breakdown of glycogen stores. Within the sampled cell types, presumptive glycogen appeared as electron-dense, isodiametric particles scattered throughout the cytoplasm. Reaction product for G6Pase activity was localized consistently within the lumen of the nuclear envelope and endoplasmic reticulum and frequently within an outer saccule of the Golgi complex under normal conditions. Choroid plexus epithelia from stressed mice exhibited a qualitative increase in cytoplasmic glycogen and a decrease in G6Pase activity; the other cell types did not express demonstrable alterations in glycogen concentration and G6Pase activity. The results indicate that glycogen and G6Pase activity are prevalent within non-neural cells of the adult mammalian CNS. Glucose utilization in the choroid plexus epithelium may be altered by stressful conditions that influence the functional activity of this cell.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-7381
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The potential for transcytosis (endocytosis → intracellular transport → exocytosis) of protein and membrane events associated with fluid phase and adsorptive endocytic processes within epithelia of the choroid plexus [blood-cerebrospinal fluid (CSF) barrier] were investigated in mice injected intravenously or into the lateral cerebral ventricle with native horseradish peroxidase (HRP) or the lectin wheatgerm agglutinin (WGA) conjugated to HRP. WGA binds to specific cell surface oligosaccharides and enters cells by the process of adsorptive endocytosis; native HRP is taken into cells non-specifically by fluid phase endocytosis. The lysosomal system of organelles and the endoplasmic reticulum, identified by enzyme cytochemical markers applied to choroid epithelia, were analysed for possible participation in transcytosis and compared to epithelial organelles harbouring the exogenous tracer proteins. Blood-borne native HRP was endocytosed readily by choroid epithelia whereas WGA-HRP was not, perhaps because WGA-HRP does not escape fenestrated endothelia as easily as native HRP. The blood-borne proteins incorporated within endocytic vesicles by choroid epithelia were directed to endosomes (prelysosomes) and secondary lysosomes (e.g. tubules, multivesicular/dense bodies) for eventual degradation and did not reach the apical/microvillus surface. Both CSF-borne native HRP and WGA-HRP entered choroid epithelia within endocytic vesicles derived from the microvillus border. Native HRP, ultimately sequestered within endosomes and secondary lysosomes, failed to undergo transcytosis through the epithelia into the basolateral clefts. Conversely, CSF-borne WGA-HRP was transported through the epithelia and released into the basolateral clefts within 10 min post-injection. The lectin conjugate labelled epithelial vesicles, endosomes, secondary lysosomes and, at 30 min post-injection, the transmost saccule of the Golgi complex which exhibits acid hydrolase activity. Tubular profiles, related either to the endosome apparatus or to the lysosomal system, and the endoplasmic reticulum did not appear involved in the transcytotic pathway. The data suggest that CSF-borne protein entering the choroid epithelium by adsorptive endocytosis can undergo rapid transcytosis through the cell. The results provide insight to transcytotic pathways utilizing vesicles, the endosomal apparatus, and the Golgi complex within the choroid epithelium for circumventing the blood-CSF barrier. Hypothesized membrane events and morphological associations among constituents of the endomembrane system within the choroid epithelium are summarized diagrammatically.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 27 (1994), S. 471-494 
    ISSN: 1059-910X
    Schlagwort(e): Transplantation ; Central nervous system ; Endothelium ; Immunology ; Immunohistochemistry ; Blood vessels ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: Development of a blood-brain barrier (BBB) within mammalian CNS grafts, placed either intracerebrally or peripherally, has been controversial. Published data from this laboratory have emphasized the presence or the absence of a BBB within solid mammalian tissue or cell suspension grafts is determined intrinsically by the graft and not by the surrounding host parenchyma (e.g., brain, kidney, testis, etc.). Nevertheless, correctly interpreting whether or not a BBB exists within brain grafts is manifested by methodologies employed to answer the question and by ensuing neuropathological and immunological consequences of intracerebral grafting. The present study addresses these issues and suggests misinterpretation for the absence of a BBB in brain grafts can be attributed to: (1) rupture of interendothelial tight junctional complexes in vessels of CNS grafts fixed by perfusion of the host; (2) damage to host vessels and BBB during the intracerebral grafting procedure; (3) graft placement in proximity to inherently permeable vessels (e.g., CNS sites lying outside the BBB) supplying the subarachnoid space/pial surface and circumventricular organs such as the median eminence, area postrema, and choroid plexus; and (4) graft rejection associated with antigen presenting cells and the host immune response. The latter is prevalent in xenogeneic grafts and exists in allogeneic grafts with donor-host mismatch in the major and/or minor histocompatibility complex. CNS grafts between non-immunosuppressed outbred donor and host rats of the same strain (e.g., Sprague Dawley or Wistar rats) can be rejected by the host; these grafts exhibit populations of immuonohistochemically identifiable major histopatibility complex class I+ and class II+ cells (microglia, macrophages, etc.) and CD4+ T-helper and CD8+ T-cytotoxic lymphocytes. PC12 cell suspension grafts placed within the CNS of non-immunosuppressed Sprague Dawley rats are rejected similarly. Donor cells from solid CNS grafts placed intracerebrally and stained immunohistochemically for donor major histocompatibility complex (MHC) class I expression are identified within the host spleen and lymph nodes; these donor MHC expressing cells may initiate the host immune response subsequent to the cells entering the general circulation through host cerebral vessels damaged during graft placement. Rapid healing of damaged cerebral vessels is stimulated with exogenously applied basic fibroblast growth factor, which may prove helpful in reducing the potential entry of donor cells to the host circulation. These results have implication clinically for the intracerebral grafting of human fetal CNS cell suspensions. © 1994 Wiley-Liss, Inc.
    Zusätzliches Material: 15 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 3 (1986), S. 413-437 
    ISSN: 0741-0581
    Schlagwort(e): Enzyme Cytochemistry ; Glycogen ; Glucose-6-phosphatase ; Central nervous system ; Neurons ; Glia ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: Reliable ultrastructural techniques are applied for cytochemical identification of glycogen and localization of glucose-6-phosphatase (G6Pase) activity within neurons and glia of the adult mammalian CNS. Modulations in the cerebral localizations of glycogen and G6Pase activity are identified during various experimental conditions (i.e., salt-stress, fasting, and trauma). The cytochemical reaction for demonstration of G6Pase activity implies that the enzyme acts as a phosphohydrolase to convert glucose-6-phosphate to glucose. The degradation of glycogen in vivo is one source of glucose-6-phosphate as a substrate for G6Pase. Glycogen is preserved by perfusion-fixation of the brain with 2% glutaraldehyde-2% formaldehyde. Chopper sections of this material are postfixed in buffered 1% osmium tetroxide-1.5% potassium ferrocyanide, which serves as a contrast stain for glycogen, or in buffered 1% osmium tetroxide. Plastic-embedded ultrathin sections of CNS tissue postfixed in 1% osmium tetroxide are stained for glycogen with periodic acid-thiocarbohydrazide-silver protein. Intracellular glycogen appears as electron-dense isodiametric particles and, under normal and experimental conditions, is most abundant within astrocytes. Neuronal glycogen is sparse to negligible normally but appears increased within specific neuronal populations during stressful states.Optimal preservation of G6Pase activity in the brain is obtained by brief perfusion-fixation with 2% glutaraldehyde. Tissue sections are incubated in a modified Leskes medium containing glucose-6-phosphate or mannose-6-phosphate as substrate and lead nitrate. Utilizing the Gomori lead capture technique, G6Pase reaction product is localized within the lumen of the endoplasmic reticulum (ER) and related organelles (i.e., nuclear envelope, Golgi complex) of perikarya, dendrites, and glia. The ER in axons and axon terminals fails to express G6Pase activity under normal conditions but does so in some neurons exhibiting a degenerating appearance. A transient, cytochemical decrease in G6Pase activity may occur within some perikarya during stressed conditions.The results indicate that within neurons and glia of the adult CNS cytochemical stains are well suited for ultrastructural identification of glycogen and localization of G6Pase activity. Modulations in glycogen particle concentration and in localization of G6Pase activity in the neuron can occur in response to conditions that influence the energy metabolism of the cell. These modulations may reflect differences in the regional utilization of glucose as an energy-producing substrate and as a derivative of glycogenolysis within the CNS.
    Zusätzliches Material: 17 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...