Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 679 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 674 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 25 (2000), S. 1161-1172 
    ISSN: 1573-6903
    Keywords: Proteases ; cathepsin D ; apoptosis ; β-amyloid ; amyloid precursor protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A prominent feature of brain pathology in Alzheimer's disease is a robust activation of the neuronal lysosomal system and major cellular pathways converging on the lysosome, namely, endocytosis and autophagy. Recent studies that identify a disturbance of the endocytic pathway as one of the earliest known manifestation of Alzheimer's disease provide insight into how β-amyloidogenesis might be promoted in sporadic Alzheimer's disease, the most prevalent and least well understood form of the disease. Primary lysosomal dysfunction has historically been linked to neurodegeneration. New data now directly implicate cathepsins as proteases capable of initiating, as well as executing, cell death programs in certain pathologic states. These and other studies support the view that the progressive alterations of lysosomal function observed during aging and Alzheimer's disease contribute importantly to the neurodegenerative process in Alzheimer's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular glycogen and glucose-6-phosphatase (G6Pase) activity were identified cytochemically within epithelia of the choroid plexus and ependyma of the cerebral ventricles including the median eminence and area postrema, the cerebral endothelium and pericytes from control, salt-stressed and fasted adult mice. Identification of glycogen was obtained by employing osmium tetroxide-potassium ferrocyanide and the periodic acid-thiocarbohydrazide-silver protein technique as ultrastructural contrast stains. A lead-capture method was used to localize G6Pase activity with glucose-6-phosphate or mannose-6-phosphate as substrate. Cerebral G6Pase functions predominantly as a phosphohydrolase to convert glucose-6-phosphate to glucose. Some glucose-6-phosphatein vivo may be derived from the breakdown of glycogen stores. Within the sampled cell types, presumptive glycogen appeared as electron-dense, isodiametric particles scattered throughout the cytoplasm. Reaction product for G6Pase activity was localized consistently within the lumen of the nuclear envelope and endoplasmic reticulum and frequently within an outer saccule of the Golgi complex under normal conditions. Choroid plexus epithelia from stressed mice exhibited a qualitative increase in cytoplasmic glycogen and a decrease in G6Pase activity; the other cell types did not express demonstrable alterations in glycogen concentration and G6Pase activity. The results indicate that glycogen and G6Pase activity are prevalent within non-neural cells of the adult mammalian CNS. Glucose utilization in the choroid plexus epithelium may be altered by stressful conditions that influence the functional activity of this cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 3 (1986), S. 413-437 
    ISSN: 0741-0581
    Keywords: Enzyme Cytochemistry ; Glycogen ; Glucose-6-phosphatase ; Central nervous system ; Neurons ; Glia ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Reliable ultrastructural techniques are applied for cytochemical identification of glycogen and localization of glucose-6-phosphatase (G6Pase) activity within neurons and glia of the adult mammalian CNS. Modulations in the cerebral localizations of glycogen and G6Pase activity are identified during various experimental conditions (i.e., salt-stress, fasting, and trauma). The cytochemical reaction for demonstration of G6Pase activity implies that the enzyme acts as a phosphohydrolase to convert glucose-6-phosphate to glucose. The degradation of glycogen in vivo is one source of glucose-6-phosphate as a substrate for G6Pase. Glycogen is preserved by perfusion-fixation of the brain with 2% glutaraldehyde-2% formaldehyde. Chopper sections of this material are postfixed in buffered 1% osmium tetroxide-1.5% potassium ferrocyanide, which serves as a contrast stain for glycogen, or in buffered 1% osmium tetroxide. Plastic-embedded ultrathin sections of CNS tissue postfixed in 1% osmium tetroxide are stained for glycogen with periodic acid-thiocarbohydrazide-silver protein. Intracellular glycogen appears as electron-dense isodiametric particles and, under normal and experimental conditions, is most abundant within astrocytes. Neuronal glycogen is sparse to negligible normally but appears increased within specific neuronal populations during stressful states.Optimal preservation of G6Pase activity in the brain is obtained by brief perfusion-fixation with 2% glutaraldehyde. Tissue sections are incubated in a modified Leskes medium containing glucose-6-phosphate or mannose-6-phosphate as substrate and lead nitrate. Utilizing the Gomori lead capture technique, G6Pase reaction product is localized within the lumen of the endoplasmic reticulum (ER) and related organelles (i.e., nuclear envelope, Golgi complex) of perikarya, dendrites, and glia. The ER in axons and axon terminals fails to express G6Pase activity under normal conditions but does so in some neurons exhibiting a degenerating appearance. A transient, cytochemical decrease in G6Pase activity may occur within some perikarya during stressed conditions.The results indicate that within neurons and glia of the adult CNS cytochemical stains are well suited for ultrastructural identification of glycogen and localization of G6Pase activity. Modulations in glycogen particle concentration and in localization of G6Pase activity in the neuron can occur in response to conditions that influence the energy metabolism of the cell. These modulations may reflect differences in the regional utilization of glucose as an energy-producing substrate and as a derivative of glycogenolysis within the CNS.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...