Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Transketolase (TK; EC 2.2.1.1) is a key pentose phosphate shunt enzyme that plays an important role in the production of reducing equivalents and pentose sugars. TK activity declines in the brains of patients with Alzheimer's disease or Wernicke-Korsakoff syndrome, as well as in thiamine-deficient rats. Understanding the role of TK in the pathophysiology of these neurodegenerative conditions requires knowledge of its regional, cellular, and subcellular distribution within the brain. The current study employed in situ hybridization and immunocytochemistry to examine the distribution of TK mRNA and its encoded protein in adult rat brain. TK mRNA and protein were widely distributed throughout the brain. However, they were enriched in selective perikarya in the piriform cortex, nucleus of the diagonal band, red nucleus, dorsal raphe, pontine nucleus, locus coeruleus, trapezoid, inferior olive, and several cranial nerve nuclei. Lower expression of TK mRNA and protein occurred in layer V of cortex, olfactory tubercle, ventral pallidum, medial septal nucleus, hippocampus, thalamic and hypothalamic nuclei, mammillary body, central gray, and the substantia nigra. TK immunoreactivity also occurred in the nuclei of ubiquitously distributed glial cells, as well as ependymal cells. The heterogeneous distribution of TK may reflect a variety of metabolic activities among different brain regions but does not provide a simple molecular explanation for selective cell death in either thiamine deficiency or other conditions where TK is reduced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Thiamine deficiency impairs oxidative metabolism and causes metabolic encephalopathy. An early reduction in transketolase (TK) activity may be an important pathogenic event. To assess the role of TK, we have delineated the regional/cellular distribution of TK protein and mRNA in adult rat brain in pyrithiamine-induced thiamine deficiency. TK activity declined in both vulnerable and spared regions. Immunoblots showed a parallel reduction of TK protein. With a few exceptions, immunocytochemistry indicated an overall decline of TK immunoreactivity and the decrease was not specific to vulnerable areas. In contrast to the pronounced, general decline of TK protein, in situ hybridization revealed a regional decrease of 0–25% of TK mRNA in thiamine deficiency. Northern blots indicated a similar level of TK mRNA in whole brain in thiamine deficiency. These results show that the decline of TK activity results from a proportional decrease of TK protein, and the deficiency may be due to an instability of TK protein or an inhibition of TK mRNA translation. The lack of correlation of the distribution, and the absence of specific alteration, of TK in affected regions suggest that the reduced TK may not be linked directly to selective vulnerability in thiamine deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Abnormalities in oxidative metabolism and inflammation accompany many neurodegenerative diseases. Thiamine deficiency (TD) is an animal model in which chronic oxidative stress and inflammation lead to selective neuronal death, whereas other cell types show an inflammatory response. Therefore, the current studies determined the response of different brain cell types to TD and/or inflammation in vitro and tested whether their responses reflect inherent properties of the cells. The cells that have been implicated in TD-induced neurotoxicity, including neurons, microglia, astrocytes, and brain endothelial cells, as well as neuroblastoma and BV-2 microglial cell lines, were cultured in either thiamine-depleted media or in normal culture media with amprolium, a thiamine transport inhibitor. The activity levels of a key mitochondrial enzyme, α-ketoglutarate dehydrogenase complex (KGDHC), were uniquely distributed among different cell types: The highest activity was in the endothelial cells, and the lowest was in primary microglia and neurons. The unique distribution of the activity did not account for the selective response to TD. TD slightly inhibited general cellular dehydrogenases in all cell types, whereas it significantly reduced the activity of KGDHC exclusively in primary neurons and neuroblastoma cells. Among the cell types tested, only in neurons did TD induce apoptosis and cause the accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation product. On the other hand, chronic lipopolysaccharide-induced inflammation significantly inhibited cellular dehydrogenase and KGDHC activities in microglia and astrocytes but not in neurons or endothelial cells. The results demonstrate that the selective cell changes during TD in vivo reflect inherent properties of the different brain cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 72 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Several lines of evidence support the role of oxidative stress, including increased lipid peroxidation, in the pathogenesis of Alzheimer's disease (AD). Lipid peroxidation generates various reactive aldehydes, such as 4-hydroxynonenal (HNE), which have been detected immunochemically in AD, particularly in neurofibrillary tangels, one of the major diagnostic lesions in AD brains. A recent study demonstrated that acrolein, the most reactive among the α, β-unsaturated aldehyde products of lipid peroxidation, could be rapidly incorporated into proteins, generating a carbonyl derivative, a marker of oxidative stress to proteins. The current studies used an antibody raised against acrolein-modified keyhole limpet hemocyanin (KLH) to test whether acrolein modification of proteins occurs in AD. Double immunofluorescence revealed strong acrolein-KLH immunoreactivity in more than half of all paired helical filament (PHF)-1-labeled neurofibrillary tangles in AD cases. Acrolein-KLH immunoreactivity was also evident in a few neurons lacking PHF-1-positive neurofibrillary tangles. Light acrolein-KLH immunoreactivity occurred in dystrophic neurites surrounding the amyloid-β core, which itself lacked acrolein-KLH staining. The pattern of acrolein-KLH immunostaining was similar to that of HNE. Control brains did not contain any acrolein-KLH-immunoreactive structures. The current results suggest that protein-bound acrolein is a powerful marker of oxidative damage to protein and support the hypothesis that lipid peroxidation and oxidative damage to protein may play a crucial role in the formation of neurofibrillary tangles and to neuronal death in AD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO*) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the α-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO* would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO* and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. The metabolic encephalopathy caused by thiamine deficiency (TD) is a classic example in which an impairment of cerebral oxidative metabolism leads to selective cell death. In experimental TD in rodents, a reduction in the activity of the thiamine diphosphate-dependent, mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) occurs before the onset of pathologic lesions and is among the earliest biochemical deficits found. To understand the molecular basis and the significance of the deficiency of KGDHC in TD-induced brain damage, the enzyme activity and protein levels of KGDHC were analyzed. The effect of TD on the subregional/cellular distribution of KGDHC and the anatomic relation of KGDHC with selective cell death were also tested by immunocytochemistry. Consistent with several previous studies, TD dramatically reduced KGDHC activity in both anatomically damaged (thalamus and inferior colliculus) and spared (cerebral cortex) regions. Immunocytochemistry revealed no apparent correlation of regional KGDHC immunoreactivity or its response to TD with affected regions in TD. The basis of the enzymatic and immunocytochemical behavior of KGDHC was further assessed by quantitative immunoblots, using antibodies specific for each of the three KGDHC components. Despite the marked decrease of KGDHC activity in TD, no reduction of any of the three KGDHC protein levels was found. Thus, TD impairs the efficacy of the KGDHC catalytic machinery, whereas the concentration of protein molecules persists. The generalized decline of KGDHC activity with no apparent anatomic selectivity is consistent with the notion that the compromised mitochondrial oxidation sensitizes the brain cells to various other insults that precipitate the cell death. The current TD model provides a relevant experimental system to understand the molecular basis of many neurodegenerative conditions in which mitochondrial dysfunction and KGDHC deficiency are prominent features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: There is substantial evidence implicating both inflammation and mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS) pathogenesis. We investigated the therapeutic effects of cyclooxygenase 2 (COX-2) inhibitors both alone and in combination with creatine in the G93A transgenic mouse model of ALS. Oral administration of either celecoxib or rofecoxib significantly improved motor performance, attenuated weight loss and extended survival. The administration of COX-2 inhibitors significantly reduced prostaglandin E2 levels at 110 days of age. The combination of creatine with COX-2 inhibitors produced additive neuroprotective effects and extended survival by approximately 30%. The COX-2 inhibitors significantly protected against depletion of anterior horn motor neurons and creatine with COX-2 inhibitors showed greater protection than COX-2 inhibitors alone. These results suggest that combinations of therapies targeting different disease mechanisms may be a useful strategy in the treatment of ALS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cyclooxygenase-2 (COX-2) is a key molecule in the inflammatory pathway in amyotrophic lateral sclerosis (ALS). Cytosolic phospholipase A (cPLA2) is an important enzyme providing substrate for cyclooxygenases. We therefore examined cPLA2 expression in human ALS and mutant Cu/Zn superoxide dismutase (SOD1) transgenic mice and its relation to COX-2. Immunohistochemistry and real-time RT-PCR revealed elevated cPLA2 protein and its mRNA levels in the lumbar spinal cord of mutant SOD1 mice. COX-2 immunoreactivity was increased in lumbar spinal cord sections from both familial ALS (FALS) and sporadic ALS (SALS) as compared to controls, and cPLA2 immunoreactivity was increased in a patient with FALS. Oral administration of the non-selective cyclooxygenase (COX) inhibitor, sulindac, extended the survival (by 10%) of G93A SOD1 mice as compared to littermate controls. Sulindac, as well as the selective COX-2 inhibitors, rofecoxib and celecoxib reduced cPLA2 immunoreactivity in the lumbar spinal cord of G93A transgenic mice. Sulindac treatment preserved motor neurons, and reduced microglial activation and astrocytosis, in the spinal cord of G93A SOD1 transgenic mice. These results suggest that cPLA2 plays an important role in supplying arachidonic acid to the COX-2 driven inflammatory pathway in ALS associated with SOD1 mutations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Altered energy metabolism, including reductions in activities of the key mitochondrial enzymes α-ketoglutarate dehydrogenase complex (KGDHC) and pyruvate dehydrogenase complex (PDHC), are characteristic of many neurodegenerative disorders including Alzheimer's Disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Dihydrolipoamide dehydrogenase is a critical subunit of KGDHC and PDHC. We tested whether mice that are deficient in dihydrolipoamide dehydrogenase (Dld+/–) show increased vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), malonate and 3-nitropropionic acid (3-NP), which have been proposed for use in models of PD and HD. Administration of MPTP resulted in significantly greater depletion of tyrosine hydroxylase-positive neurons in the substantia nigra of Dld+/– mice than that seen in wild-type littermate controls. Striatal lesion volumes produced by malonate and 3-NP were significantly increased in Dld+/– mice. Studies of isolated brain mitochondria treated with 3-NP showed that both succinate-supported respiration and membrane potential were suppressed to a greater extent in Dld+/– mice. KGDHC activity was also found to be reduced in putamen from patients with HD. These findings provide further evidence that mitochondrial defects may contribute to the pathogenesis of neurodegenerative diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 94 (2005), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Oxidative stress and inflammation are implicated in neurodegenerative diseases including Parkinson's disease (PD) and Huntington's disease (HD). Celastrol is a potent anti-inflammatory and antioxidant compound extracted from a perennial creeping plant belonging to the Celastraceae family. Celastrol is known to prevent the production of proinflammatory cytokines, inducible nitric oxide synthase and lipid peroxidation. Mice were treated with celastrol before and after injections of MPTP, a dopaminergic neurotoxin, which produces a model of PD. A 48% loss of dopaminergic neurons induced by MPTP in the substantia nigra pars compacta was significantly attenuated by celastrol treatment. Moreover, celastrol treatment significantly reduced the depletion in dopamine concentration induced by MPTP. Similarly, celastrol significantly decreased the striatal lesion volume induced by 3-nitropropionic acid, a neurotoxin used to model HD in rats. Celastrol induced heat shock protein 70 within dopaminergic neurons and decreased tumor necrosis factor-α and nuclear factor κ B immunostainings as well as astrogliosis. Celastrol is therefore a promising neuroprotective agent for the treatment of PD and HD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...