Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 36 (1980), S. 1238-1239 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A method of estimating the photosynthetic rate of soybean leaves using an oxygen electrode is presented. The procedure is rapid, requires small samples and compares favourably with estimates by other techniques. Light saturation occurs at 1200 μE·m−2·sec−1. The apparent Km for HCO 3 − is 3.2 mM at pH 7.6.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 8 (1976), S. 121-129 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The state-3 rate of respiration of potato tuber mitochondria is inhibited by concentrations of KCl or NaCl above 125 mM, and by concentrations of sucrose, lactose, or maltose above 500 mM, but not at all by mannitol, glucose, glycine, or proline up to a concentration of 1500 mM in the medium. Mitochondria from cauliflower, beetroot, cucumber, rock melon, and watermelon behave very similarly to those from potato tuber. The variable response to different solutes proves that the reduction in respiration is not a simple function of the chemical potential of water in the medium. Disruption of potato mitochondria by ultrasonic vibration does not relieve the inhibition of succinate oxidation caused by KCl or sucrose. However, treatment with detergent abolishes completely the inhibition of respiration by sucrose. Inhibition of succinate dehydrogenase [Succinate:PMS, oxidoreductase (EC.1.3.99.1)] and malate dehydrogenase [L-Malate:NAD oxidoreductase (EC.1.1.1.37)] activities by sucrose is less than the inhibition of succinate- and malate-dependent oxygen uptake by the potato mitochondria. Limited substrate uptake and, alternatively, reduced electron flow as a consequence of a direct effect of solute on the mitochondrial membrane are considered as possible mechanisms of inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 7 (1975), S. 189-200 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The state-3 rate of respiration of rat-liver mitochondria was depressed in media containing KCl, sucrose, or mannitol at concentrations in excess of 125 mM. At equivalent concentrations, glucose caused less inhibition than sucrose or mannitol, and no inhibition was observed with glycine. These observations establish that solute inhibition of respiration is not a consequence of the reduced chemical potential of water in the system. The accumulation of succinate by mitochondria was not reduced by high sucrose concentrations. Sonication only partially relieved inhibition by sucrose or mannitol, and not at all that by KCl, and the evidence indicates that solute inhibition is not primarily an inhibition of substrate entry into mitochondria. Sucrose in the assay media inhibited succinate dehydrogenase [succinate: PMS oxidoreductase (EC.1. 3. 91)] and malate dehydrogenase [l-malate: NAD oxidoreductase (EC.1.1.1.37)] activities, but these inhibitions were less than those of succinate-and malate-dependent oxygen uptake by mitochondria. Disruption of the mitochondrial membrane by detergent abolished the inhibition of respiration by sucrose, and the evidence indicates that solute inhibits the functional capacity of the membrane-associated respiratory system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 109 (1988), S. 235-243 
    ISSN: 1573-5036
    Keywords: carbon ; dark respiration ; deficiency ; Glycine max ; oil protein ratio ; photosynthesis ; potassium ; seed ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Photosynthetic and dark respiration rates of single leaflets and whole plant canopies were measured during podfilling of soybean plants that were grown under low and high K regimes. Dark respiration rates of detached seed from these plants were also determined during the latter part of seed development. The study was carried out to test the hypothesis that low oil/protein ratios of seed from K-deficient plants resulted from the reduction in carbon availability within the plant, as a result of lower carbon assimilation rates and higher rates of respiratory carbon loss. Photosynthetic rates of upper canopy leaflets during early podfilling were depressed under K deficiency but this effect did not occur with whole plant canopies. In fact, towards the latter part of the podfilling period canopy photosynthetic rates were higher in K-deficient plants as nitrogen was exported earlier from the leaves in high-K plants, resulting in earlier leaf senescence in these plants. The level of K supply had no consistent effect on dark respiration rates of single leaflets or plant canopies, and had no effect on CO2 evolution rates from detached, developing seed. The findings do not substantiate the hypothesis that reduced photosynthetic efficiency or enhanced respiratory carbon loss are responsible for lower oil/protein ratios in seed from K-deficient soybean plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 104 (1987), S. 183-190 
    ISSN: 1573-5036
    Keywords: cultivar ; deficiency ; Glycine max ; oil percentage ; potassium ; protein percentage ; seed yield ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The seed yield per unit of potassium applied differed for five soybean cultivars which were grown to maturity under different K regimes in a glasshouse. Whereas Dodds was the most responsive cultivar to moderate increases in K supply, the cultivar Bragg was the most efficient in its ability to produce seed with low levels of available K; Lee and Forest were the least efficient cultivars while Bossier and Dodds were of intermediate efficiency. The basis for the efficiency of cv. Bragg was that the growth of its tops, as indicated by mature stem weights and its roots, were less affected by reduced K supply than those of other cultivars. This enabled it to produce more pods under K-deficient regimes, resulting in a greater seed yield per plant. The percentage reduction in oil/protein ratios in the seed of the five cultivars under moderate K deficiency correlated closely with reductions in seed yield. However, changes in this ratio were poorly related to the K percentages in the seed. All cultivars experienced an impairment of plant senescence under K deficiency as evidenced by a reduction in leaf abcission and a delay in pod maturity. The existence of genetic diversity in K-use efficiency means that breeding programmes could utilize K-efficient germplasm in developing new cultivars for soils not naturally high in potassium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 70 (1983), S. 317-326 
    ISSN: 1573-5036
    Keywords: Glycine max (L.) Merr. ; Iron ; Manganese ; Soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The uptake and distribution of iron and manganese were studied in a manganese-sensitive soybean cultivar (‘Bragg’) grown over a range of supply levels of these nutrients in solution culture. At high (90 and 275 μM) manganese levels, increasing the iron concentration in solution from 2 to 100 μM partially overcame the effects of manganese toxicity. Interactions between manganese and iron occurred for dry matter yields, rate of Mn absorption by the roots, and the proportions of manganese and iron transported to the tops. No interaction was observed for the rate of root absorption of iron. The percentage distribution of manganese in the plant top increased with increasing iron, despite a reduced rate of Mn uptake. On the other hand, iron uptake was independent of solution Mn concentration and increased with increasing solution Fe. Also more iron was retained in the roots at high Mn and/or Fe levels in solution. Concentrations of manganese and iron in roots, stems and individual leaves were affected independently by the manganese and iron supplyi.e. without any interaction occurring between the two elements. In general, the concentration in a plant part was related directly to the solution concentration. Symptoms resembling iron deficiency correlated poorly with leaf Fe concentrations whereas high levels of manganese were found in leaves displaying Mn toxicity symptoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: K supply ; K Mg uptake ; Mn nutrition ; Soybean ; Short-term ; Water culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soybean (Glycine max (L) Merr. cv. Bragg) seedlings were grown in nutrient solutions to evaluate the response to manganese nutrition as affected by potassium supply. In solutions containing 275 μM manganese, increasing the solution concentration of potassium from 1 mM to 10 mM alleviated symptoms of manganese toxicity, decreased manganese concentrations in the leaves and increased dry matter yields of the plants. The reduction in manganese toxicity was brought about by a reduced rate of root absorption of manganese at high potassium supply levels. Increasing the supply of either potassium or manganese decreased the leaf concentration of magnesium although there were no apparent symptoms of magnesium deficiency in any treatment. The reduced concentration of magnesium in the leaves was due to effects of potassium and manganese on the rate of root absorption of magnesium. Under manganese deficiency conditions, growth was reduced and manganese concentrations in plant parts were very low; there was no effect of potassium supply when manganese was absent from the nutrient solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 96 (1986), S. 317-325 
    ISSN: 1573-5036
    Keywords: Glycine max (L.) Merr. ; Oil percentage ; Potassium ; Protein percentages ; Seed yield ; Soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A reduction in K supply to soybean plants to deficiency levels during both vegetative and reproductive development resulted in reductions not only in yield, but also in oil and K concentrations in the seed and a concomittant increase in seed protein concentration. Correlations between mean fruit yield and oil, protein and K concentrations, over a wide range of K regimes, were 0.97, −0.94 and 0.98, respectively. When K supply was increased well above the level necessary to produce maximum yields,i.e. luxury consumption, there was no significant change in K concentration in the seed, indicating a high degree of control in the movement of K to the developing seed under high K regimes. When the K supply to the plant was limiting, the rate of accumulation of oil and carbohydrate fractions, but not of seed protein, declined during the latter part of podfilling. This resulted in a fall in the C/N ratio in the non-structural seed components during this part of seed development. Depriving plants of K only during seed development had no effect on seed composition or yield, whereas resupplying K to deficient plants after anthesis resulted in almost the same seed composition and yield as that which occurred with control plants. Possible mechanisms whereby K deficiency influences soybean seed composition and yield are discussed in terms of movement of carbohydrate and nitrogen to the seed. We suggest that potassium-deficient soils are likely to produce crops with low yields and low seed oil levels; the crop may respond to K fertilizers as late as anthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...