Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Grass and forage science 59 (2004), S. 0 
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Moisture and treading treatments were imposed on intact turves that were relocated to a glasshouse after being removed from three hill pastures of different soil fertility in the North Island of New Zealand. The experiment consisted of a 2-month stress phase, where the treatments were wetting (W), wetting and treading (WT), drying (D) and control (C). In this phase, herbage accumulation rate, tiller density and leaf extension rate were lower on the D turves, and herbage accumulation rate and tiller density were lower on the WT turves than for the C turves. Herbage accumulation rate was higher on the W treatment than on the C treatment.In the 2-month recovery phase, herbage accumulation rate and leaf extension rate on the D turves were higher than those of the C treatment. Herbage accumulation rate and tiller density took longer to recover on the WT turves but by the end of the recovery period tiller density on these turves exceeded that of the C turves and the original tiller densities on the WT turves. Changes (increase or decrease) in leaf extension rate were associated with the W treatment and tiller density with the WT treatment. Moisture was limiting on the D and C turves, but on the W and WT turves, where moisture was adequate for plant growth, nutrients were limiting, notably phosphorus on the W and WT turves and sulphur on the W turves.The D treatment turves recovered very quickly once the stress was removed but the WT turves were slower to recover. Under the experimental conditions applied, the hill pasture turves were more resilient to the drying treatment than the wetting and treading treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Grass and forage science 52 (1997), S. 0 
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Effects of different grazing frequencies and intensities on herbage production (on both a unit pasture and individual plant basis) and on persistence of chicory (Cichorium intybus L. cv. Grasslands Puna) were studied at Palmerston North, New Zealand (latitude 40°23′S) from November 1994 to November 1995. Three experiments were conducted on the same chicory stand, sown on 12 May 1994. The main grazing experiment had two grazing intensities, hard-lax grazing (50- to 100-mm stem stubble to mid-January, and thereafter 100- to 150-mm stem stubble) and lax grazing (100- to 150-mm stem stubble), and three grazing frequencies (1-, 2- or 4-week intervals). A subsidiary plant survival experiment compared the survival of 120 marked plants in ungrazed and grazed treatments. A late autumn grazing experiment examined the effects on plant persistence in the following spring. The greatest herbage mass (leaf + stem) resulted from the 4-week grazing frequency [9640 ± 874 kg dry matter (DM) ha−1], in which stem mass was reasonably low (1270 ± 410 kg DM ha−1), but was significantly higher in the 4-week grazing frequency than 1- and 2-week grazing frequencies (P 〈 0·01). Grazing intensity had no significant effect except on the average stem mass of individual plants when the hard-lax intensity gave a lower stem mass (P 〈 0·01). There were no interactions between grazing frequency and intensity in herbage mass. Plant density declined by 35% over the growing season with the decline unaffected by grazing intensity or frequency during the season. Grazing in late autumn resulted in approximately 27% less plants the following spring. It was concluded that grazing management through the growing season cannot be used to improve persistence without compromising leaf growth rate, but that avoidance of grazing late autumn will improve the persistence of chicory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 36 (1980), S. 1238-1239 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A method of estimating the photosynthetic rate of soybean leaves using an oxygen electrode is presented. The procedure is rapid, requires small samples and compares favourably with estimates by other techniques. Light saturation occurs at 1200 μE·m−2·sec−1. The apparent Km for HCO 3 − is 3.2 mM at pH 7.6.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...