Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Evidence of a link between aluminium and Alzheimer's disease, parkinsonism-dementia of Guam, and dialysis encephalopathy raises questions regarding the role of this element in the pathogenesis of these conditions. Therefore, we have investigated the use of gallium-67 (67Ga) as a marker for brain uptake of aluminium. The binding of 67Ga to plasma proteins has been studied, and the blood-brain barrier permeability and autoradiographic distribution of this isotope in rat brain determined in vivo. The autoradiographic distribution of 125I-Fe-transferrin receptors in rat brain has also been determined in vitro. Results show that 67Ga was bound to plasma transferrin, entered the brain with a blood-brain barrier permeability of 2.48 X 10-6 ml/min/g, and showed a marked regional distribution that was very similar to that of 125I-Fe-transferrin receptors. Our data suggest that the vulnerability of the hippocampus, amygdala, and cerebral cortex in conditions such as those mentioned above may be partly due to an increased uptake and deposition of aluminium in these regions by the iron transport system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3401-3406 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A novel type of ideal toroidal Alfvén eigenmode, localized in the low-shear core region of a tokamak plasma, is shown to exist, whose frequency is near the upper continuum of the toroidal Alfvén gap. This mode converts to a kinetic-type toroidal Alfvén eigenmode above a critical threshold that depends on aspect ratio, pressure gradient, and shear. Opposite to the usual ideal toroidal Alfvén eigenmode, this new mode is peaked in amplitude on the small-major-radius side of the plasma. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 356-372 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ambiguities in the ideal magnetohydrodynamic (MHD) analysis of toroidal Alfvén eigenmodes (TAE) are resolved by incorporating nonideal effects (finite electron conductivity and ion gyroradius) into the MHD model of Rosenbluth et al. [Phys. Fluids B 4, 1806 (1992)]. The previous ideal theory yields a dielectric function containing branch points in the complex frequency plane, but provides no specification of the corresponding branch lines. The kinetic model represents a singular perturbation of the ideal theory, and specifies precisely the location of branch cuts in the ideal limit. Moreover, the analytic structure of the complex frequency plane for the kinetic model shows a countably infinite set of poles in place of a branch cut—with a new kinetic-type TAE mode near each pole. It has also been verified that the ideal frequency root is in most cases close to one of the kinetic roots. The damping and mode structure is determined numerically within the framework of the high-mode-number, small inverse aspect ratio, low beta, small gyroradius model. Finally, an analytic form for the damping is obtained including both continuum and nonideal effects, and agrees well with the numerical results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A newly developed continuum gyrokinetic code GYRO has been formulated on a radial grid to operate at finite relative gyroradius in a noncyclic radial annulus with profile variation. The code is used to simulate ion temperature gradient mode turbulence and to demonstrate that gyroBohm scaling can be obtained well above the instability threshold but sufficiently strong profile shear stabilization can break gyroBohm scaling down to Bohm scaling (or worse) near threshold. An adaptive source technique is used to maintain profiles. Clear evidence for nonlocal transport is also found in which the local diffusivity depends on the plasma gradients at some considerable radial distance. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1822-1829 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Many kinetic plasma instabilities, in quite different physical systems, share a genuinely similar mathematical structure near isolated phase-space islands. For this reason, dynamical features such as faster-than-exponential growth of the instability, as well as nonlinear frequency sweeping, are found to be universal. Numerical δf methods, which follow the evolution of the (nonlinear) perturbed distribution function along single-particle orbits, have been applied to analytic models, which include a continuous particle source, resonant particle collisions, and wave damping. The result is a series of codes that can reliably model the nonlinear evolution of kinetic instabilities, including some specific to tokamak plasmas, over experimentally relevant time scales. New results include (i) nonlinear simulations of two-species, one-degree-of-freedom plasmas; (ii) simulations of fishbone bursts in tokamak plasmas; (iii) nonlinear modeling of beam-driven toroidal Alfvén eigenmode activity in tokamaks. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 2326-2333 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper a time evolution equation for internal kink oscillations is derived. It is valid for both stable and unstable plasma regimes, and incorporates the response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). It is shown that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 2597-2611 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfvén waves in tokamak geometry has been developed. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave–wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-timescale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved for the deviation, δf=f−f0, from an initial analytic distribution f0. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an International Thermonuclear Experimental Reactor [ITER EDA Doc. Series No. 7 (International Atomic Energy Agency, Vienna, 1996), p. V-32] instability scenario. Results show that weakly damped core-localized modes alone cause negligible alpha transport in these reactor-like plasmas—even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 3102-3113 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Numerical simulations and quantitative theoretical explanations are presented for the spontaneous formation of a hole–clump pair in phase space. The equilibrium is close to the linear threshold for instability and the destabilizing resonant kinetic drive is nearly balanced by either extrinsic dissipation or a second stabilizing resonant kinetic component. The hole and clump, each support a nonlinear wave where the trapping frequency of the particles is comparable to the kinetic linear growth rate from the destabilizing species alone. The power dissipated is balanced by energy extracted by trapped particles locked to the changing wave-phase velocities. With extrinsic dissipation, phase space structures always form just above the linear instability threshold. With a stabilizing kinetic component, an electrostatic interaction is considered with varying mass ratios of the stabilizing and destabilizing species together with collisional effects. With these input parameters, various nonlinear responses arise, only some of which sweep in frequency. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 32 (1979), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 487 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...