Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The abilities of d-fenfluramine (d-F) and that of d-norfenfluramine (d-NF) to inhibit [3H]serotonin ([3H]5-HT) accumulation in normal and reserpinized synaptosomes were compared to establish to what extent the serotonin-releasing activity of the two drugs might contribute to reduced accumulation of [3H]5-HT. The results indicate that the inhibitory action of (d-NF) on [3H]5-HT accumulation is due principally to its ability to release [3H]5-HT. In contrast, the interference of release in accumulation studies does not seem to play an important role for d-F, suggesting that release from the granular pool and true uptake inhibition are two different mechanisms by which d-F affects serotonin neurons in vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Clinica Chimica Acta 200 (1991), S. 153-160 
    ISSN: 0009-8981
    Keywords: Blood cells ; Histiocytosis X ; LDH ; Lymphocyte ; MDH ; Monocyte
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 173 (1984), S. 255-258 
    ISSN: 0014-5793
    Keywords: Benzodiazepine receptor ; Cerebellum ; Diazepam ; Hippocampus ; Membrane fluidity ; PK 11195 ; Ro 15-1788 ; Zopiclone
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0920-9964
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1912
    Keywords: BIMT 17 ; 5-HT1A receptors ; 5-HT2A receptors ; Extracellular recording
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1–10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1–1000 μg/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1–10 μg/kg and 0.1–3 μg/kg i.v. respectively, and reduced it at higher doses, 30–300 μg/kg and 10–30 μg/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 μg/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OHDPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons. These findings suggest that BIMT 17 directly inhibits the electrical activity of medial prefronto-cortical neurons through its dual mode of receptor interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1912
    Keywords: Key words BIMT 17 ; 5-HT1A receptors ; 5-HT2A receptors ; Extracellular recording
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  BIMT 17 (1- [2- [4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1–10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1–1000 μg/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4-[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1–10 μg/kg and 0.1–3 μg/kg i.v. respectively, and reduced it at higher doses, 30–300 μg/kg and 10–30 μg/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 μg/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OH-DPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons. These findings suggest that BIMT 17 directly inhibits the electrical activity of medial prefronto-cortical neurons through its dual mode of receptor interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1459
    Keywords: Blood-CSF barrier ; CSF proteins ; Acute lymphoblastic leukaemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ten children affected by acute lymphoblastic leukaemia without CNS involvement were treated with a CNS prophylaxis protocol. Intrathecal methotrexate and CNS irradiation (60Co) administered at different times both induced an increase in blood-CSF barrier permeability to serum proteins (albumin, IgG, alpha2 macroglobulin). The relationship between permeability coefficients of proteins was analysed by theoretical porous or vesicular blood-CSF barrier models. The analysis indicated that both therapeutic procedures affect endothelial pinocytosis. An increase in radius of pinocytotic vesicles from 400 to 1500 Å seemed the most relevant change. The damage of endothelial barrier permselectivity could be involved in acute and late delayed toxic effects of intrathecal methotrexate and of CNS irradiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...