Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The decomposition of 15N-labelled catch-crop materials (rape, radish and rye), obtained from field experiments, was studied in a chalky Champagne soil during a 60-week incubation at 28°C. Mineralized N was assumed to come from either labile or recalcitrant fractions of plant residues. The labile fraction represented about one-third of the catch-crop N; its mineralization rate constant varied from 0.06 to 0.12 d−1. The decomposition rate of the recalcitrant N fraction ranged from 0.03 × 10−2 to 0.06 × 10−2 d−1. Catch-crop species and rate of incorporation had no effect on N residue mineralized at the end of incubation.The decomposition of labelled rye was monitored in the same soil during a 5-month pot experiment to determine the N availability to an Italian ryegrass crop and the effect of plants on the decomposition processes. The 15N-rye decomposed rapidly both in the presence or absence of Italian ryegrass, but the amounts of N mineralized were influenced by the presence of living roots: 42% of the 15N in labelled rye was present as inorganic N in the pots without plants after 5 months, compared with only 32% in the ryegrass crop. Comparison of microbial-biomass dynamics in both treatments suggested that there had been preferential utilization by soil micro-organisms of materials released from the living roots than the labelled plant residues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 26 (1994), S. 253-261 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1998), S. 19-26 
    ISSN: 1432-0789
    Keywords: Key words Denitrifying microflora ; Nitrous oxide ; nosZ Gene ; Nitrous oxide reductase ; 16S rDNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The ozone-depleting gas N2O is an intermediate in denitrification, the biological reduction of NO3 – to the gaseous products N2O and N2 gas. The molar ratio of N2O produced (N2O/N2O+N2) varies temporally and spatially, and in some soils N2O may be the dominant end product of denitrification. The fraction of NO3 –-N emitted as N2O may be due at least in part to the abundance and activity of denitrifying bacteria which possess N2O reductase. In this study, we enumerated NO3 –-reducing and denitrifying bacteria, and compared and contrasted collections of denitrifying bacteria isolated from two agricultural soils, one (Auxonne, soil A) with N2O as the dominant product of denitrification, the other (Châlons, soil C) with N2 gas as the dominant product. Isolates were tested for the ability to reduce N2O, and the presence of the N2O reductase (nosZ)-like gene was evaluated by polymerase chain reaction (PCR) using specific primers coupled with DNA hybridization using a specific probe. The diversity and phylogenetic relationships of members of the collections were established by PCR/restriction fragment length polymorphism of 16s rDNA. The two soils had similar numbers of bacteria which used NO3 – as a terminal electron acceptor anaerobically. However, the soil A had many more denitrifiers which reduced NO3 – to gaseous products (N2O or N2) than did soil C. Collections of 258 and 281 bacteria able to grow anaerobically in the presence of NO3 – were isolated from soil A and soil C, respectively. These two collections contained 66 and 12 denitrifying isolates, respectively, the others reducing NO3 – only as far as NO2 –. The presence of nosZ sequences was generally a poor predictor of N2O reducing ability: there was agreement between the occurrence of nosZ sequences and the N2O reducing ability for only 42% of the isolates; 35% of the isolates (found exclusively in soil A) without detectable nosZ sequences reduced N2O whereas 21% of the isolates carrying nosZ sequences did not reduce this gas under our assay conditions. Twenty-eight different 16S rDNA restriction patterns (using two restriction endonucleases) were distinguished among the 78 denitrifying isolates. Two types of patterns appeared to be common to both soils. Twenty-three and three types of patterns were found exclusively among bacteria isolated from soils A and C, respectively. The specific composition of denitrifying communities appeared to be different between the two soils studied. This may partly explain the differences in the behaviour of the soils concerning N2O reduction during denitrification.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1435-0661
    Keywords: CEL, cellulose fraction d.m., dry matter HEM, hemicellulose fraction LIG, lignin fraction POL, soluble polyphenols S20, soluble C fraction SOL, soluble fraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: −1 of added C. Mineralization kinetics were described using a two-compartment decomposition model that decomposes according to first-order kinetics. Amounts of C mineralized after 7 d and the decomposition rate coefficient of the labile fraction were related mainly to the soluble C forms of the residue. No statistical relationship was established between the N concentration of residues and their decomposition in the soil. The incorporation of crop residues into soil led to various soil mineral N dynamics. Two residues caused net N mineralization from the time of their incorporation, whereas all the others induced net N immobilization (1–33 g N kg−1 of added C). After 168 d, only residues with a C/N ratio 〈24 induced a surplus of mineral N compared with the control soil. The mineral N dynamics were related mainly to the organic N concentration of the residues and to their C/N ratio. At the start of incubation, these dynamics were also influenced by the presence of polyphenols in the plant tissues. Finally, this study showed the need to include the biochemical quality of crop residues in any C and N transformation models that describe decomposition. In contrast, the N concentration or C/N ratio of the residues are sufficient to predict the net effects of crop residues on soil mineral N dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...