Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 76 (1988), S. 398-404 
    ISSN: 1432-2242
    Keywords: Zea mays L. ; Electrophoresis ; Recurrent selection ; Population improvement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two maize (Zea mays L.) populations, AS1(S) and ECR-A, were evaluated for allozyme frequency changes associated with selection for improved seedling emergence, early season vigor and early maturity. Eleven marker loci were examined and four loci were used for indirect selection in an attempt to modify cold tolerance and maturity. Allozyme-selected divergent subpopulations were produced by compositing selected S1 progeny from cycle one (C1) of AS1(S) and from C2 of ECR-A. These subpopulations and S1 generations from all cycles resulting from phenotypic selection, ECR-A C1 through C7 and AS1(S) CO through C6, were tested in cold tolerance and agronomic performance trials over five environments in 1986. Seedling emergence and seedling dry weight did not improve with phenotypic selection in ECR-A, while plant height, ear height, grain yield, grain moisture, days to mid-silk and days to mid-pollen were reduced significantly. Contrasts between divergent allozyme-selected subpopulations from ECR-A were significant for grain moisture and mid-pollen date. For AS1(S), seeding emergence increased, while plant and ear height decreased with phenotypic selection. Contrasts between allozyme-selected subpopulations were significant for plant and ear height. Changes associated with marker-based selection for AS1(S) were not in the same direction as with phenotypic selection. Selection for favorable allozyme genotypes may be effective in changing certain traits in populations that have been modified by direct selection, however results may not be predictable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Zea mays ; Restriction fragment length polymorphisms (RFLPs)-Phosphorus (P) stress-quantitative trait loci (QTLs)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An understanding of the genetic nature underlying tolerance to low-phosphorus (low-P) stress could aid in the efficient development of tolerant plant strains. The objective of this study was to identify the number of loci in a maize (Zea mays L.) population segregating for tolerance to low-P stress, their approximate location, and the magnitude of their effect. Seventy-seven restriction fragment length polymorphisms (RFLPs) were identified and scored in a maize F2 population derived from a cross between line NY821 and line H99. The F2 individuals were self-pollinated to produce F3 families. Ninety F3 families were grown in a sand-alumina system, which simulated diffusion-limited, low-P soil conditions. The F3 families were evaluated for vegetative growth in a controlled-environment experiment. To identify quantitative trait loci (QTLs) underlying tolerance to low-P stress, the mean phenotypic performances of the F3 families were contrasted based on genotypic classification at each of 77 RFLP marker loci. Six RFLP marker loci were significantly associated with performance under low-P stress (P〈0.01). One marker locus accounted for 25% of the total phenotypic variation. Additive gene action was predominant for all of the QTLs identified. Significant marker loci were located on four separate chromosomes representing five unlinked genomic regions. Two marker loci were associated with an additive by additive epistatic interaction. A multiple regression model including three marker loci and the significant epistatic interaction accounted for 46% of the total phenotypic variation. Heterozygosity per se was not predictive of phenotypic performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...