Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Glutamate toxicity in the N18-RE-105 neuronal cell line results from the inhibition of high-affinity cystine uptake, which leads to a depletion of glutathione and the accumulation of oxidants. Production of superoxides by one-electron oxidation/reduction of quinones is decreased by NAD(P)H:quinone reductase, an enzyme with DT-diaphorase activity. Using glutamate toxicity in N18-RE-105 cells as a model of neuronal oxidative stress, we report that the degree of glutamate toxicity observed is inversely proportional to quinone reductase activity. Induction of quinone reductase activity by treatment with t-butylhydroquinone reduced glutamate toxicity by up to 80%. In contrast, treatment with the quinone reductase inhibitor dicumarol potentiated the toxic effect of glutamate. Measurement of cellular glutathione indicates that increases in its levels are not responsible for the protective effect of t-butylhydroquinone treatment. Because many types of cell death may involve the formation of oxidants, induction of quinone reductase may be a new strategy to combat neurodegenerative disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In some animal models of ischemia, neuronal degeneration can be prevented by the selective antagonism of the N-methyl-D-aspartate (NMDA) glutamate receptor sub-type, suggesting that glutamate released during ischemia causes injury by activating NMDA receptors. The rat hippocampal slice preparation was used as an in vitro model to study the pharmacology of glutamate toxicity and investigate why NMDA receptors are critical in ischemic injury. Acute toxicity was assessed by quantifying the inhibition of protein synthesis, which we confirmed by autoradiography to be primarily neuronal. The effect of NMDA was prevented by the specific antagonists MK-801 and ketamine, as well as by the less selective antagonist kynurenic acid. The less selective antagonists kynurenic acid and 6,7-dinitroquinoxaline-2,3-dione antagonized the effects of quisqualate and NMDA. In contrast to previous observations with dissociated neurons in tissue culture, the toxicity of glutamate was unaffected by antagonists, regardless of the glutamate concentration, the duration of exposure, or the presence of magnesium. The high concentration of glutamate required to inhibit protein synthesis and the inability of receptor antagonists to block the effect of glutamate suggest that either glutamate acts through a non-receptor-mediated mechanism, or that the receptor-mediated nature of glutamate effects are masked in the slice preparation, perhaps by the glial uptake of glutamate. The altered physiology induced by ischemia must potentiate the neurotoxicity of glutamate, because we observed with a brain slice preparation that only high concentrations of glutamate caused neurotoxicity in the presence of oxygen and glucose and that these effects were not reversed by glutamate receptor antagonists.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract This study was undertaken to explore in synaptosomal preparations the disposition of N-acetyl-aspartyl-glutamate (NAAG), an endogenous acidic dipeptide neurotransmitter candidate. Radiolabel from N-acetyl-aspartyl-[3H]glutamate was taken up rapidly into an osmotically sensitive compartment by rat brain synaptosomal preparations in a sodium-, temperature-, and time-dependent manner. HPLC analysis of the accumulated radiolabel indicated that the bulk of the tritium cochromatographed with glutamic acid and not with NAAG. In contrast, [14C]NAAG, labeled on the N-terminal acetate, was not taken up by the synaptosomal preparation. All effective inhibitors of synaptosomal, Na+-dependent [3H]glutamate uptake were found to exhibit similar potency in inhibiting uptake of tritium derived from [3H]NAAG. However, certain α-linked acidic dipeptides, structurally similar to NAAG, as well as the potent convulsant quisqualic acid inhibited synaptosomal transport of [3H]NAAG but were ineffective as inhibitors of [3H]glutamate transport. Together with a demonstration of disparities between the regional accumulation of radiolabel from [3H]NAAG and high-affinity [3H]glutamate uptake, these data suggest the presence in brain of a specific peptidase targeting carboxy-terminal glutamate-containing dipeptides that may be coupled to the Na+-dependent glutamate transporter. These findings provide a possible mechanism for NAAG inactivation subsequent to its release from nerve endings.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 50 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A sodium-dependent high-affinity [3H]-hemicholinium-3 ([3H]HCh-3) binding site was solubilized from rat striatal synaptic plasma membranes by 0.2% deoxycholate. Deoxycholate solubilization of the [3H]HCh-3 binding site was dependent upon both detergent concentration and ionic strength of the solubilization medium. Specific [3H]HCh-3 binding to the solubilized preparation was both sodium- and chloride-dependent and saturable, exhibiting an affinity of 14.2 nM and a capacity (Bmax) of 695 fmol/mg protein. Choline and other analogs inhibited specific [3H]HCh-3 binding to the solubilized preparation in a concentration-dependent manner with the similar rank order of potency observed in crude synaptic membranes. Treatments known to disrupt both protein and lipid moieties resulted in diminished specific [3H]HCh-3 binding. These results suggest that the characteristics of the solubilized [3H]HCh-3 binding site are similar to those of the membrane-bound site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: N-Acetylated-α-linked acidic dipeptidase (NAA-LADase) is a Cl− dependent, membrane bound, metallopeptidase that cleaves the endogenous neuropeptide N-acetyl-l-aspartyl-l-glutamate (NAAG) in vitro. To examine the pattern of NAALADase expression in the CNS, subcellular, regional, and developmental studies were conducted. Subcellular fractionation of lysed synaptosomal membranes revealed a substantial enrichment of the peptidase in synaptic plasma membranes as compared to mitochondrial or myelin subfractions. Regional studies reveal an apparent restriction of peptidase activity to kidney and brain. A threefold variation in specific activity was observed among brain regions, with highest specific activity in the cerebellum and lowest in telencephalic structures, a pattern that does not, in general, correlate with NAAG levels. Ontogenetic studies demonstrate a region-dependent, postnatal pattern of expression of NAALADase activity, with adult levels attained earliest in brainstem, as was previously reported for NAAG. Postnatal NAALADase expression would not appear to support a role for the peptidase in constitutive protein processing, but rather suggests that NAALADase may play a role in synaptic peptide degradation. Glutamate (Glu) excised from NAAG by NAALA Dase could be transported efficiently by uptake processes. Lesion studies, however, do not support a close structural association between NAALADase activity and the corticostriatal sodium-dependent, high-affinity, Glu uptake system. Similar to in vitro data documenting the route of NAAG degradation by NAALADase, after intrastriatal injection, NAAG was rapidly cleaved to two major products. N-acetyl-aspartate and Glu, with a t1/2 of approximately 10 min. Thus, the route of in vivo catabolism of NAAG parallels results from studies on NAALADase activity in vitro. These results are consistent with a role of NAALADase in the synaptic processing of NAAG. However, certain discrepancies in the regional and ontogenetic profiles of NAAG and NAALADase suggest that this relationship is not an exclusive one and may reflect a role for NAALADase on additional N-acetylated acidic peptides in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Mice that are transgenic for and overexpress human copper/zinc superoxide dismutase were used to investigate the role of this enzyme in the pathophysiology of Down's syndrome (DS; trisomy 21). Previous studies have indicated that overexpression of copper/zinc superoxide dismutase leads to deficits in peripheral markers of neurochemical function, which are consistent with the hypothesis that this enzyme plays a role in the pathophysiology of DS. We have measured concentrations of amino acids and biogenic amines (catecholamines, serotonin, and their metabolites), uptake of biogenic amines into crude synaptosomes, and activities of synthetic enzymes in both control mice and mice transgenic for human copper/zinc superoxide dismutase that overexpress it by two- to fivefold above control values. We find that these transgenic mice exhibit higher concentrations of the biogenic amines in specific brain regions, with little or no change in amino acid concentration. Furthermore, tyrosine hydroxylase activity is increased in the striatum of the transgenics, whereas glutamic acid decarboxylase and choline acetyltransferase activities are unchanged in all but one brain region. These findings indicate that over-expression of copper/zinc superoxide dismutase, by itself, is not sufficient to cause the synaptic neurochemical deficits reported in DS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In previous studies we documented an increase in the levels of the serotonin metabolite, 5-hydroxyindoleacetic acid, in the congenitally hyperammonemic sparse fur mouse. To extend these findings, brain serotonin receptors were studied in these animals. Radioligand binding assays were performed using [3H]ketanserin to label Serotonin2 sites and 8-[3H]hydroxy(di-H-propylamino)tetralin to label serotonin iA sites in cortical membrane homogenates. The capacity (5max) for [3H]ketanserin binding was significantly lower (−21%; p 〈 0.05) in sparse fur animals than in control animals; there was no change in affinity (ATD). In contrast, the capacity for 8-[3H]hydroxy(di-n-propylamino)tetralin binding was significantly greater (26%; p 〈 0.05) in sparse fur compared with control animals. No difference in affinity was observed. Using two behavioral assays, the functional responsiveness of these serotonin receptors was compared in sparse fur and control animals. Head twitch activity elicited by administration of the serotonin agonist quipazine was studied as a behavior mediated by serotonin receptors. Compared with controls, sparse fur mice demonstrated a significantly decreased head twitch response (p 〈 0.005). Hypothermia elicited by administration of 8-hydroxy(di-n-propylamino)tetralin was studied as a physiologic response mediated by serotoniniA receptors. Although mere were not overall group differences in the dose-response data, there was a significant increase in the hypothermia induced by 8-hydroxy(di-n-propylami-no)tetralin in sparse fur compared with control mice (p 〈 0.02) at the highest dose. These data provide further support for a link between hyperammonemia and alterations in the serotonin system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: N-Acetylaspartylglutamate (NAAG) is a neuropeptide localized to several putative glutamatergic neuronal systems, including the rodent optic pathway. To determine whether the peptide is released by depolarization, the superior colliculus of the rat was perfused with 2 μCi of [3H]NAAG, then with Krebs-bicarbonate buffer for 1 h, using a microdialysis system. Subsequently, 10-min fractions were collected and analyzed by HPLC for [3H]NAAG. Addition of 100 μM veratridine resulted in a several-fold increase in the evoked release of [3H]NAAG that was virtually abolished by coperfusion with Ca2+-free Krebs buffer containing 1 mM EGTA. When [3H]glutamate was used as the precursor, veratridine depolarization resulted in only an 80% increase in the release of [3H]NAAG. Prior enucleation of the right eye reduced the spontaneous release of [3H]NAAG by 50%, and the veratridine-evoked release by greater than 85%, from the left superior colliculus. These results suggest that NAAG is released upon depolarization and may serve as a neurotransmitter/neuromodulator in the optic tract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 34 (1980), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Methylazoxymethanol acetate (MAM), a potent, rapidly eliminated nucleic acid alkylating agent, produces microencephaly in rat pups when injected into their dams on day 15 of gestation. In the adult microencephalic rats, neuronal loss is largely confined to telencephalic structures, such as the superficial neocortical laminae, whose neuroepithelial progenitor cells were undergoing vigorous replication during the chemical exposure. Histological examination of the forebrain 2 days after injection revealed early selective damage to the ventricular geminal zone with relative sparing of cortical plate neurons generated on earlier days. The degree of specificity of MAM's action on neurochemically defined neuronal populations was examined by measuring presynaptic markers for GABAergic, noradrenergic and cholinergic neurons in atrophic lateral cortex from 20 days gestation to adulthood. Although treatment reduced GABAergic markers (GABA, its synthetic enzyme and synaptosomal uptake process) in proportion to loss of cortex mass (-67%), the maturational pattern for remaining GABAergic neurons was virtually normal. Although the maturational sequence of noradrenergic markers was similar to control, the concentration of endogenous norepinephrine, [3H]norepinephrine uptake and tyrosine hydroxylase specific activity were two- to fourfold higher than control at each time. However, total noradrenergic markers per cortex section were nearly identical to control throughout development, indicating that development of the noradrenergic axonal arbor in neocortex was insensitive to loss of neurons in the terminal field. Maturation of cholinergic markers (endogenous acetylcholine, its synthetic enzyme and [3H]choline uptake) in the atrophic cortex was biphasic: concentrations were similar to control values for the first 12 postnatal days, but gradually rose to levels twofold higher than control. These results indicate that neurochemical alterations observed in cortex from prenatally MAM-treated rats are primarily the result of early selective elimination of neuronal subpopulations. Fetal MAM exposure appeared to have minimal effects on biochemical differentiation of neurons remaining intact in the atrophic cortex. MAM appears to be a useful toxin for producing selective loss of neuronal groups based on their time of generation in the fetus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 38 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Intrastriatal injection of either kainic acid (0.35 μg) or ibotenic acid (7.0 μg) in the mouse causes a profound and selective degeneration of striatal neurons accompanied by a secondary astrocytic response. The kainate injection (0.35 μg) resulted in significant decrements in the striatal levels of phosphocreatine and ATP by 30 min, a progressive reduction in adenosine phosphates between 30 min and 48 h, and a decrease in energy charge; whereas lactate levels increased by 44% at 2 h, glucose levels fell by 56%. Two hours after intrastriatal injection of ibotenic acid (7.0 μg) similar alternations in striatal high-energy phosphates and glucose disposition were found. Prior decortication protected against the neurotoxic effects of kainate in the mouse striatum and prevented the alterations in high-energy phosphates at 2 h although lactate levels increased by 212%. These findings in vivo are consistent with the hypothesis that the neurotoxic effects of acidic excitatory amino acids involve a profound activation of energy consumption by affected neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...