Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In immature rodent brain, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [3H]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 ± 8% in lesioned tissue, compared with the contralateral striatum (mean ± SEM, n = 6 assays, p 〈 0.006, paired t test). Doses of 5–25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p 〈 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (−28 ± 4% at 1 h; p 〈 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, −56 ± 11%, n = 3, p 〈 0.03, paired t test, lesioned versus contralateral striata). Treatment with the noncompetitive NMDA antagonist MK-801 (1 mg/kg i.p.) attenuated both the early and subsequent irreversible suppression of HAGU (1 h postlesion −28 ± 4%, n = 6 assays versus −12.6 ± 5% with MK-801, n = 4, p= 0.005; 24 h postlesion, −44 ± 8%, n = 5, versus +2.4 ± 6%, n = 3 with MK-801, p= 0.01, Wilcoxon ranked sum tests). In immature brain excitotoxic lesions produce an acute reversible suppression of HAGU, and a delayed long-lasting reduction in HAGU secondary to brain injury. These data suggest that accumulation of endogenous glutamate, as a consequence of the acute disruption of HAGU, could contribute to the pathogenesis of excitotoxic neuronal injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 ± 33 fmol/min; HVA, 974 ± 42 fmol/min; and 5-HIAA, 276 ± 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p 〈 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p 〈 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 ± 32 fmol/min; control (n = 12), 75 ± 14 fmol/min (p 〈 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In an experimental model of perinatal hypoxic-ischemic brain injury, we examined quisqualic acid (Quis)-stimulated phosphoinositide (PPI) turnover in hippocampus and striatum. To produce a unilateral forebrain lesion in 7-day-old rat pups, the right carotid artery was ligated and animals were then exposed to moderate hypoxia (8% oxygen) for 2.5 h. Pups were killed 24 h later and Quis-stimulated PPI turnover was assayed in tissue slices obtained from hippocampus and striatum, target regions for hypoxic-ischemic injury. The glutamate agonist Quis (10-4M) preferentially stimulated PPI hydrolysis in injured brain. In hippocampal slices of tissue derived from the right cerebral hemisphere, the addition of Quis stimulated accumulation of inositol phosphates by more than ninefold (1,053 ± 237% of basal, mean ± SEM, n = 9). In contrast, the addition of Quis stimulated accumulation of inositol phosphates by about fivefold in the contralateral hemisphere (588 ± 134%) and by about sixfold in controls (631 ± 177%, p 〈 0.005, comparison of ischemic tissue with control). In striatal tissue, the corresponding values were 801 ± 157%, 474 ± 89%, and 506 ± 115% (p 〈 0.05). In contrast, stimulation of PPI turnover elicited by the cho-linergic agonist carbamoylcholine, (10-4 or 10-2M) was unaffected by hypoxia-ischemia. The results suggest that prior exposure to hypoxia-ischemia enhances coupling of excitatory amino acid receptors to phospholipase C activity. This activation may contribute to the pathogenesis of irreversible brain injury and/or to mechanisms of recovery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 59 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous work in our laboratory demonstrated that ischemic-hypoxic brain injury in postnatal day 7 rats causes a substantial increase in phosphoinositide (PPI) turnover stimulated by the glutamate analogue quisqualic acid (QUIS) in the hippocampus and striatum. To examine this phenomenon in more detail, we performed similar experiments after producing injury by unilateral intracerebral injections of the glutamate analogue N-methyl-D-aspartate (NMDA). The 7-day-old rodent brain is hypersensitive to NMDA neurotoxicity and NMDA injection causes histopathology that closely resembles that produced by ischemia-hypoxia. NMDA, 17 nmol in 0.5 μl, was injected into the right posterior striatum of 7-day-old rat pups and they were killed 3 days later. Hippocampal or striatal tissue slices were prepared from ipsilateral and contralateral hemispheres from vehicle-injected control and from noninjected control rat pups. Slices were then incubated with myo-[3H]inositol plus glutamate agonists or antagonists in the presence of lithium ions and [3H]inositol monophosphate ([3H]IP1) accumulation was measured. The glutamate agonists, QUIS, L-glutamic acid, and (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, stimulated greater [3H]IP1 release in tissue ipsilateral to the NMDA injection compared with that in the contralateral side and in control pups. The glutamate antagonists, D,L-2-amino-7-phosphonoheptanoic acid, 3-[(+)-2-carboxypiperazin-4-yl]-propyl-l-phosphoric acid, kynurenic acid, and 6,7-dinitroquinoxaline-2,3-dione did not inhibit QUIS-stimulated [3H]IP1 release. The enhanced PPI turnover in the lesioned tissue was specific to glutamate receptors because carbachol (CARB) failed to elicit preferential enhanced stimulation. To investigate the possibility that alterations in the release of endogenous neurotransmitters had a role in potentiating QUIS-stimulated PPI turnover after NMDA injection, we examined the effect of tetrodotoxin. Tetrodotoxin (0.5 μM) did not alter QUIS-or CARB-stimulated PPI hydrolysis in the lesioned or unlesioned tissue. The influence of extracellular calcium concentration on QUIS-stimulated [3H]IP1 formation was also examined after the NMDA lesion. Moderate reduction of calcium in the buffer (1 μM) enhanced the lesion effect. Low calcium buffer enhanced QUIS-stimulated PPI turnover in the lesioned hippocampal slices, but reduced QUIS stimulation in contralateral slices and controls. In contrast, CARB-stimulated PPI turnover was not enhanced in low Ca2+ buffer. A similar pattern of Ca2+ dependency was observed in striatal slices. Calcium-free (〈10 nM) buffer suppressed PPI turnover in all groups. These studies demonstrate that NMDA-induced excitotoxic injury in neonatal rats causes a selective enhancement of QUIS-stimulated PPI turnover that resembles the effects of ischemia-hypoxia. In addition, we found that agonist-stimulated PPI turnover is sensitive to the in vitro Ca2+ concentration. These changes could reflect altered coupling of non-NMDA receptors to phospholipase C activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 47 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract We examined the impact of hypoxia-ischemia on high-affinity [3H]glutamate uptake into a synaptosomal fraction prepared from immature rat corpus striatum. In 7-day-old pups the right carotid artery was ligated, and pups were exposed to 8% oxygen for 0, 0.5, 1, or 2.5 h, and allowed to recover for up to 24 h before they were killed. High-affinity glutamate uptakes in striatal synaptosomes derived from tissue ipsilateral and contralateral to ligation were compared. After 1 h of hypoxia plus ischemia, high-affinity glutamate uptake in the striatum was reduced by 54 ± 13% compared with values from the opposite (nonischemic) side of the brain (p 〈 0.01, t test versus ligates not exposed to hypoxia). There were similar declines after 2.5 h of hypoxiaischemia. Activity remained low after a 1 h recovery period in room air, but after 24 h of recovery, high-affinity glutamate uptake was equal bilaterally. Kinetic analysis revealed that loss of activity could be attributed primarily to a 40% reduction in the number of uptake sites. Hypoxia alone had no effect on high-affinity glutamate uptake although it reduced synaptosomal uptake of [3H]3,4-dihydroxyphenyl-ethylamine. Addition of 1 mg/ml of bovine serum albumin to the incubation medium preferentia'ly stimulated high-affinity glutamate uptake in hypoxic-ischemic brain compared with its effects in normal tissue. These studies demonstrate that hypoxia-ischemia reversibly inhibits high-affinity glutamate uptake and this occurs earlier than the time required to produce neuronal damage in the model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: This study explored further the function of the metabotropic excitatory amino acid receptor in the rat brain. The trans and cis isomers of (±)-1-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were characterized for relative affinities at ionotropic and metabotropic excitatory amino acid receptors in vitro, as well as ability to produce in vivo excitatory or excitotoxic effects in rats. trans-ACPD was about 12 times more potent in vitro as an agonist for metabotropic excitatory amino acid receptors when compared to its ability to displace N-methyl-D-aspartate (NMDA) ([3H]CGS-19755) receptor binding. cis-ACPD was about 30 times more potent as a displacer of [3H]CGS-19755 binding than as a stimulant of phosphoinositide hydrolysis. When administered intra-peritoneally to neonatal rats, both cis- and trans-ACPD produced convulsions that were prevented by the competitive NMDA receptor antagonists, LY233053 and LY274614. cis-ACPD was six times more potent as a convulsant when compared to trans-ACPD. Both compounds were examined for excitotoxic effects in vivo following stereotaxic injection into the mature or neonatal rat striatum. Doses of trans-ACPD of up to 5,000 or 1,200 nmol produced few signs of striatal neuronal degeneration in the mature or neonatal brain, respectively. However, cis-ACPD produced extensive dose-related neuronal degeneration at doses of 100–1,000 nmol in the mature brain and 50–200 nmol in the neonatal brain. These studies suggest that, unlike the ionotropic excitatory amino acid receptors, activation of the metabotropic excitatory amino acid receptor does not result directly in excitatory effects, such as excitotoxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To assess maturation of central serotonin and catecholamine pathways at birth, we measured lumbar CSF homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), stable acid metabolites of dopamine and serotonin, using HPLC with electrochemical detection. CSFs from 57 neonates (38 premature and 19 at term) and 13 infants 1–6 months old were studied. HVA levels increased with maturity (p 〈 0.05; ANOVA), whereas, 5-HIAA levels were similar in all these subjects. HVA/5-HIAA ratios increased markedly from 1 ± 0.12 in the most premature neonates to 1.98 ± 0.17 in the older infants (p 〈 0.01; t test). There were no sex differences for these values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 34 (1980), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Methylazoxymethanol acetate (MAM), a potent, rapidly eliminated nucleic acid alkylating agent, produces microencephaly in rat pups when injected into their dams on day 15 of gestation. In the adult microencephalic rats, neuronal loss is largely confined to telencephalic structures, such as the superficial neocortical laminae, whose neuroepithelial progenitor cells were undergoing vigorous replication during the chemical exposure. Histological examination of the forebrain 2 days after injection revealed early selective damage to the ventricular geminal zone with relative sparing of cortical plate neurons generated on earlier days. The degree of specificity of MAM's action on neurochemically defined neuronal populations was examined by measuring presynaptic markers for GABAergic, noradrenergic and cholinergic neurons in atrophic lateral cortex from 20 days gestation to adulthood. Although treatment reduced GABAergic markers (GABA, its synthetic enzyme and synaptosomal uptake process) in proportion to loss of cortex mass (-67%), the maturational pattern for remaining GABAergic neurons was virtually normal. Although the maturational sequence of noradrenergic markers was similar to control, the concentration of endogenous norepinephrine, [3H]norepinephrine uptake and tyrosine hydroxylase specific activity were two- to fourfold higher than control at each time. However, total noradrenergic markers per cortex section were nearly identical to control throughout development, indicating that development of the noradrenergic axonal arbor in neocortex was insensitive to loss of neurons in the terminal field. Maturation of cholinergic markers (endogenous acetylcholine, its synthetic enzyme and [3H]choline uptake) in the atrophic cortex was biphasic: concentrations were similar to control values for the first 12 postnatal days, but gradually rose to levels twofold higher than control. These results indicate that neurochemical alterations observed in cortex from prenatally MAM-treated rats are primarily the result of early selective elimination of neuronal subpopulations. Fetal MAM exposure appeared to have minimal effects on biochemical differentiation of neurons remaining intact in the atrophic cortex. MAM appears to be a useful toxin for producing selective loss of neuronal groups based on their time of generation in the fetus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Poly(ADP-ribose) polymerase-1 is over-activated in the adult brain in response to ischemia and contributes to neuronal death, but its role in perinatal brain injury remains uncertain. To address this issue, 7-day-old wild-type (wt) and PARP-1 gene deficient (parp+/– and parp–/–) Sv129/CD-1 hybrid mice were subjected to unilateral hypoxia-ischemia and histologic damage was assessed 10 days later by two evaluators. Poly(ADP-ribose) polymerase-1 knockout produced moderate but significant (p 〈 0.05) protection in the total group of animals, but analysis by sex revealed that males were strongly protected (p 〈 0.05) in contrast to females in which there was no significant effect. Separate experiments demonstrated that PARP-1 was activated over 1–24 h in both females and males after the insult in neonatal wt mice and rats using immnocytochemistry and western blotting for poly(ADP-ribose). Brain levels of NAD+ were also significantly reduced, but the decrease of NAD+ during the early post-hypoxia-ischemia (HI) phase was only seen in males. The results indicate that hypoxia-ischemia activates Poly(ADP-ribose) polymerase-1 in the neonatal brain and that the sex of the animal strongly influences its role in the pathogenesis of brain injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-6903
    Keywords: NGF ; cholinergic neurons ; choline acetyltransferase development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Nerve growth factor (NGF) has been shown to have an effect on neurons in the central nervous system (CNS). A number of observations suggest that NGF acts as a trophic factor for cholinergic neurons of the basal forebrain and the caudate-putamen. We sought to further characterize the CNS actions of NGF by examining its effect on choline acetyltransferase (ChAT) activity in the cell bodies and fibers of developing neurons of the septum and caudate-putamen. ChAT activity was increased after even a single NGF injection. Interestingly, the magnitude of the effect of multiple NGF injections suggested that repeated treatments may augment NGF actions on these neurons. The time-course of the response to NGF was followed after a single injection on postnatal day (PD) 2. NGF treatment produced long-lasting increases in ChAT activity in septum, hippocampus and caudate-putamen. The response in cell body regions (septum, caudate-putamen) was characterized by an initial lag period of approximately 24 hr, a rapid rise to maximum values, a plateau phase and a return to baseline. The response in hippocampus was delayed by 48 hr relative to that in septum, indicating that NGF actions on ChAT were first registered in septal cell bodies. Finally, developmental events were shown to have a regionally specific influence on the response of neurons to NGF. For though the septal response to a single NGF injection was undiminished well into the third postnatal week, little or no response was detected in caudate-putamen at that time. In highlighting the potency and regional specificity of NGF effects, these observations provide additional, support for the hypothesis that NGF is a trophic factor for CNS cholinergic neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...