Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cerebral pentose phosphate pathway (PPP) activity has been linked to NADPH-dependent anabolic pathways, turnover of neurotransmitters, and protection from oxidative stress. Research on this potentially important pathway has been hampered, however, because measurement of regional cerebral PPP activity in vivo has not been possible. Our efforts to address this need focused on the use of a novel isotopically substituted glucose molecule, [1,6-13C2,6,6-2H2]glucose, in conjunction with microdialysis techniques, to measure cerebral PPP activity in vivo, in freely moving rats. Metabolism of [1,6-13C2,6,6-2H2]glucose through glycolysis produces [3-13C]lactate and [3-13C,3,3-2H2]lactate, whereas metabolism through the PPP produces [3-13C,3,3-2H2]lactate and unlabeled lactate. The ratios of these lactate isotopomers can be quantified using gas chromatography/mass spectrometry (GC/MS) for calculation of PPP activity, which is reported as the percentage of glucose metabolized to lactate that passed through the PPP. Following addition of [1,6-13C2,6,6-2H2]glucose to the perfusate, labeled lactate was easily detectable in dialysate using GC/MS. Basal forebrain and intracerebral 9L glioma PPP values (mean ± SD) were 3.5 ± 0.4 (n = 4) and 6.2 ± 0.9% (n = 4), respectively. Furthermore, PPP activity could be stimulated in vivo by addition of phenazine methosulfate, an artificial electron acceptor for NADPH, to the perfusion stream. These results show that the activity of the PPP can now be measured dynamically and regionally in the brains of conscious animals in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of implantation of a dialysis probe into the striatum of awake rats on indices of dopamine (DA) and serotonin neurotransmission were assessed, first over 24 h following initial insertion of a probe, and then again following reinsertion of a probe at the same site 1 week later. It was found that the basal concentration of DA in dialysate stabilized within 20–40 min after probe implantation, although DA showed a modest decline 24 h later. There was, however, no significant difference in basal DA between two test sessions separated by 1 week. On the other hand, the basal concentrations of the DA metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, progressively increased for 2–3 h after probe implantation and decreased markedly by 24 h later. Furthermore, in contrast to DA, the DA metabolites decreased even further after the second probe insertion. Amphetamine-stimulated DA release was also greatly attenuated following the second probe insertion, relative to the first probe insertion. Two probe insertions had only modest effects on the concentration of 5-hydroxyindoleacetic acid in dialysate, relative to the DA metabolites. It is suggested the effects of two probe insertions on DA metabolism and amphetamine-stimulated DA release described here are indicative of probe-induced damage to the nigrostriatal DA system. If this is the case, multiple probe insertions may not provide a feasible strategy for within-subjects design dialysis experiments over extended periods of time, at least in the DA system of small animals. It is suggested further that a stable basal concentration of DA in dialysate may be an especially poor indicator of the integrity of the dopaminergic input to the striatum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 ± 33 fmol/min; HVA, 974 ± 42 fmol/min; and 5-HIAA, 276 ± 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p 〈 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p 〈 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 ± 32 fmol/min; control (n = 12), 75 ± 14 fmol/min (p 〈 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Psychology 54 (2003), S. 25-53 
    ISSN: 0066-4308
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Psychology
    Notes: Abstract The development of addiction involves a transition from casual to compulsive patterns of drug use. This transition to addiction is accompanied by many drug-induced changes in the brain and associated changes in psychological functions. In this article we present a critical analysis of the major theoretical explanations of how drug-induced alterations in psychological function might cause a transition to addiction. These include: (a) the traditional hedonic view that drug pleasure and subsequent unpleasant withdrawal symptoms are the chief causes of addiction; (b) the view that addiction is due to aberrant learning, especially the development of strong stimulus-response habits; (c) our incentive-sensitization view, which suggests that sensitization of a neural system that attributes incentive salience causes compulsive motivation or "wanting" to take addictive drugs; and (d) the idea that dysfunction of frontal cortical systems, which normally regulate decision making and inhibitory control over behavior, leads to impaired judgment and impulsivity in addicts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1–10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1–5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug–environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 91 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The environmental context in which psychostimulant drugs are experienced influences their ability to induce immediate early genes (IEGs) in the striatum. When given in the home cage amphetamine induces IEGs predominately in striatonigral neurons, but when given in a novel test environment amphetamine also induces IEGs in striatopallidal neurons. The source of the striatopetal projections that regulate the ability of amphetamine to differentially engage these two striatofugal circuits has never been described. We report that transection of corticostriatal afferents selectively blocks, whereas enhancement of cortical activity with an ampakine selectively augments, the number of amphetamine-evoked c-fos-positive striatopallidal (but not striatonigral) neurons. In addition, blockade of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling cascade preferentially inhibits the number of amphetamine-evoked c-fos-positive striatopallidal neurons. These results suggest that glutamate released from corticostriatal afferents modulates the ability of amphetamine to engage striatopallidal neurons through an ERK/MAPK signaling-dependent mechanism. We speculate that this may be one mechanism by which environmental context facilitates some forms of drug experience-dependent plasticity, such as psychomotor sensitization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c-fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c-fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c-fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c-fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c-fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c-fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c-fos expression only in these cells. Finally, novelty-stress also induced c-fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c-fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Factors that modulate the psychomotor activating effects of amphetamine and cocaine, such as environmental novelty and dose, also regulate the ability of these drugs to induce c-fos mRNA expression in the subthalamic nucleus (STN). We hypothesized therefore that engagement of the STN may be important for stimulant-induced psychomotor activation. To further test this hypothesis we examined whether repeated treatment with cocaine, which enhances its psychomotor activating effects (i.e. produces behavioural sensitization), also enhances its ability to induce c-fos expression in the STN. In addition, given that STN activity is thought to be influenced by preproenkephalin mRNA-containing (ENK+) neurons in the caudate–putamen, we also examined whether repeated cocaine treatment alters c-fos expression in ENK+ cells. We report that: (i) cocaine pretreatment enhances the ability of a cocaine challenge to induce c-fos mRNA expression in the STN, and this effect is most robust at challenge doses where behavioural sensitization is observed; (ii) the ability of cocaine to induce c-fos in the STN is independent of the ability of cocaine to engage ENK+ cells. These results support the idea that the STN is involved in stimulant-induced psychomotor activation and sensitization, but suggest that stimulant-induced engagement of the STN is not dependent on ENK+ cells in the caudate–putamen. These findings may have implications concerning the neurobiological mechanisms underlying the behavioural effects of psychostimulant drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the dorsal striatum, there are two major populations of medium spiny projection neurons. One population is positive for dynorphin mRNA (DYN+), and these cells project preferentially to the substantia nigra, forming the so-called ‘direct pathway’. A second population is positive for enkephalin mRNA (ENK+), and these cells influence the substantia nigra indirectly, via the globus pallidus and subthalamic nucleus. Psychostimulant drugs, such as amphetamine and cocaine, are reported to induce immediate early genes (IEGs) in only one subpopulation of dorsal striatal projection neurons, DYN+ cells. However, this apparent selectivity appears to be a function of environmental context. We found that when given in the animal's home cage, amphetamine and cocaine increased expression of the IEG, c-fos, almost exclusively in DYN+ cells. However, when given in a novel environment, amphetamine and cocaine increased c-fos mRNA in both DYN+ and ENK+ cells. Furthermore, amphetamine and cocaine increased c-fos mRNA expression in the subthalamic nucleus when administered in the novel environment, but not when given at home. We conclude that the neural circuitry engaged by psychostimulant drugs, and their ability to induce specific patterns of gene expression, are determined by the environmental context in which they are experienced. This may be related to the ability of environmental novelty to facilitate psychostimulant drug-induced neuroplasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Carfax Publishing, part of the Taylor & Francis Group
    Addiction 95 (2000), S. 0 
    ISSN: 1360-0443
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Psychology
    Notes: The question of addiction specifically concerns (1), the process by which drug-taking behavior, in certain individuals, evolves into compulsive patterns of drug-seeking and drug-taking behavior that take place at the expense of most other activities and (2), the inability to cease drug-taking; the problem of relapse. In this paper current biopsychological views of addiction are critically evaluated in light of the “incentivesensitization theory of addiction”, which we first proposed in 1993, and new developments in research are incorporated. We argue that traditional negative reinforcement, positive reinforcement, and hedonic accounts of addiction are neither necessary nor sufficient to account for compulsive patterns of drug-seeking and drug-taking behavior. Four major tenets of the incentive-sensitization view are discussed. These are: (1) Potentially addictive drugs share the ability to produce long-lasting adaptations in neural systems. (2) The brain systems that are changed include those normally involved in the process of incentive motivation and reward. (3) The critical neuroadaptations for addiction render these brain reward systems hypersensitive (“sensitized”) to drugs and drug-associated stimuli. (4) The brain systems that are sensitized do not mediate the pleasurable or euphoric effects of drugs (drug “liking”), but instead they mediate a subcomponent of reward we have termed incentive salience (drug “wanting”). We also discuss the role that mesolimbic dopamine systems play in reward, evidence that neural sensitization happens in humans, and the implications of incentive-sensitization for the development of therapies in the treatment of addiction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...