Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Dopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c-fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c-fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c-fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c-fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c-fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c-fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c-fos expression only in these cells. Finally, novelty-stress also induced c-fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c-fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1460-9568
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: In the dorsal striatum, there are two major populations of medium spiny projection neurons. One population is positive for dynorphin mRNA (DYN+), and these cells project preferentially to the substantia nigra, forming the so-called ‘direct pathway’. A second population is positive for enkephalin mRNA (ENK+), and these cells influence the substantia nigra indirectly, via the globus pallidus and subthalamic nucleus. Psychostimulant drugs, such as amphetamine and cocaine, are reported to induce immediate early genes (IEGs) in only one subpopulation of dorsal striatal projection neurons, DYN+ cells. However, this apparent selectivity appears to be a function of environmental context. We found that when given in the animal's home cage, amphetamine and cocaine increased expression of the IEG, c-fos, almost exclusively in DYN+ cells. However, when given in a novel environment, amphetamine and cocaine increased c-fos mRNA in both DYN+ and ENK+ cells. Furthermore, amphetamine and cocaine increased c-fos mRNA expression in the subthalamic nucleus when administered in the novel environment, but not when given at home. We conclude that the neural circuitry engaged by psychostimulant drugs, and their ability to induce specific patterns of gene expression, are determined by the environmental context in which they are experienced. This may be related to the ability of environmental novelty to facilitate psychostimulant drug-induced neuroplasticity.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1–10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1–5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug–environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...