Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9304
    Keywords: surface topography ; plasma etching ; cellular orientation ; focal adhesion point ; in vitro ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: During this study, microtechnology and plasma etching were used to produce gratings 1.0 (TiD01), 2.0 (TiD02), 5.0 (TiD05), and 10.0 μm wide (TiD10) into commercially pure titanium wafers. After incubation of rat dermal fibroblast (RDFs) on these surfaces for 3 days, the cells were observed with scanning electron (SEM), transmission electron (TEM), and confocal laser scanning microscopy (CLSM). Results showed that the RDFs as a whole and their stress fibers oriented strictly parallel to the surface pattern on the TiD01 and TiD02 surfaces. On the TiD05 and TiD10 surfaces, this orientation was not observed. In addition, TEM and CLSM demonstrated that the focal adhesion points (FAP) were located mainly on the surface pattern ridges. TEM revealed that FAP were wrapped occasionally around the edges of the ridges. Only the RDFs on both the TiD05 and TiD10 surfaces protruded into the grooves and possessed FAP on the walls of the grooves. Attachment to the groove floor was observed only on the TiD10 textures. Comparison of these results with earlier observations on microtextured silicone rubber substrata suggests that material-specific properties do not influence the orientational effect of the surface texture on the observed RDF cellular behavior. The proliferation rate of the RDFs, however, seems to be much higher on titanium than on silicone rubber substrata. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 425-433, 1998.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 634-641 
    ISSN: 0021-9304
    Keywords: biocompatibility ; subcutaneous implant ; implant surface ; microgrooves ; in vivo ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: We investigated the behavior of microgrooved implants in soft tissue using polystyrene implantable disks, either smooth or microgrooved (1-10 μm) on both sides. The implants were placed subcutaneously in a goat for 1, 4, or 12 weeks. Light and transmission electron microscopy showed that fibrous capsule formation around the implants was fairly uniform. After 1 week the implants were covered with a fibrous capsule about 80 μm thick. The collagen matrix was loose, and many inflammatory cells were present. After 4 weeks the matrix was more dense and contained many newly formed blood vessels. At the implant surface a layer of inflammatory cells about 10 μm thick had accumulated. Finally, after 12 weeks the matrix had densified. One cellular layer of inflammatory cells was present at the implant surface. We carried out histomorphometric measurements of capsule thickness, inflammatory layer thickness, and the number of blood vessels. Capsule thickness appeared not to decrease with time. Further, these measurements showed that there were no differences in tissue reaction between smooth and microgrooved implants. On the basis of our observations, we suggest that 1 μm deep and 1-10 μm wide microgrooves do not influence tissue response around polystyrene implants in soft tissue. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 634-641, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...