Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 750 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 1075-1080 
    ISSN: 0006-3592
    Keywords: β-xylosidase ; transglycosylation ; reverse hydrolysis ; alkyl β-D-xylosides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Trichoderma reesei β-xylosidase (EC 3.2.1.37) is used to catalyze the production of alkyl β-D-xyloside. Two general methods of production are tested and compared using the same enzyme: transglycosylation and reverse hydrolysis. Using both methods, primary, secondary, and tertiary alcohols are studied as acceptors. In kinetically controlled process (transglycosylation), the chosen donor is methyl β-D-xyloside and primary, secondary, and tertiary alkyl alcohols are accepted. In the equilibrium-controlled synthesis, the donor is xylose whereas acceptors are only primary and secondary alcohols. The influence of the donor concentration is investigated in both processes. The yields of the kinetically controlled reactions are higher compared with those of the equilibrium-controlled synthesis. The specificity of the β linkage is confirmed by proton nuclear magnetic resonance (1H NMR) analysis. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 573-580 
    ISSN: 0006-3592
    Keywords: biphasic bioreactor ; soybean lipoxygenase-1 ; compartmentalized medium ; mass transfer ; linoleic acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Soybean lipoxygenase-1 (EC 1.13.11.12) reaction with linoleic acid as substrate was used to study the biocatalysis in a biphasic system when the reactants have surface-active properties. The poorly water-soluble substrate was initially dissolved in an apolar solvent (octane). The hydroperoxide produced was water soluble and remained in the aqueous phase (borate buffer). The bioreactor was a modified Lewis cell with a well-defined interfacial area between the two phases. Two phenomena were studied separately: the reactant transfer between the two phases and the biocatalyzed reaction in an aqueous medium. This allowed determination of the transfer and the reaction constants. Substrate transfer was found to be affected by the progress of the reaction, because linoleic acid and the hydroperoxy acid have an influence on the interfacial tension. Inactivation of the biocatalyst at the interface was observed in the bioreactor. These results indicate that it is impossible to analyze the system behavior with the method proposed in the literature, which is based on the sequential study of the substrate transfer to the aqueous phase and its biocatalysis by lipoxygenase. The interaction between transfer phenomena and reaction kinetics was studied in the biphasic system. The kinetics were different from those obtained in the aqueous medium. Catalysis and transfer influence each other reciprocally. In this compartmentalized system, cooperativity phenomena were obtained using a nonallosteric enzyme. The evolution of the system was modeled (Runge-Kutta algorithm). The curves obtained were very close to those determined experimentally.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...