Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 1 (1977), S. 25-43 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Presented in this paper is a formulation and a numerical solution method for problems which involve finite deformations of an elasto-plastic material. The governing equations are cast in rate form and the constitutive laws are formulated in a frame indifferent manner. Particular reference is made to the finite deformation of soil. Plastic failure is described by a general yield condition and plastic deformation by an arbitrary flow rule. Several examples are treated numerically.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 9 (1985), S. 369-381 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Solutions developed in the first part of this paper (i.e. describing the response of a non-homogeneous half-space subjected to surface point and line loads) are used in this part to obtain solutions for a variety of surface loadings. Consideration is given to a distributed load acting over a circular area or strip and a rigid disk or strip subjected to applied normal load and moment.It is established that the profiles of surface settlement due to uniformly distributed loads acting over a strip or circular area are strongly dependent on the degree of non-homogeneity. This dependency is reduced when the footing is rigid. When α = 1 the moduli variation is identical to the Gibson soil and the equivalence with the Winkler soil model is established.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 9 (1985), S. 353-367 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In the first part of this paper solutions are developed for the response of a non-homogeneous half-space subjected to either a surface point load or a surface line load. The non-homogeneity considered is a variation in Young's modulus (E) with depth (z) which takes the form E=mEZα where mE is a constant and α is referred to as the non-homogeneity parameter.The variation of these solutions as the non-homogeneity parameter α varies between the limits of zero (homogeneous soil) to unity (Gibson soil) gives some fresh insight into both these limiting cases.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...