Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The mechanism by which opiates affect fetal development is unknown, but one potential target is the programmed cell death (apoptosis) pathway of neurons. Apoptosis was induced in both primary neuronal cultures from embryonic day 7 cerebral hemispheres of chick brain (E7CH) and the F-11κ7 cell line (an immortalized mouse neuroblastoma × dorsal root ganglion hybrid stably transfected to overexpress κ-opioid receptors) by either staurosporine or the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002. Cells pretreated with either the μ-specific opioid agonist morphiceptin (E7CH) or the κ-specific opioid agonist U69,593 (F-11κ7) for 24 h showed increased apoptosis in response to staurosporine or wortmannin when compared with nonpretreated cells. The effects of morphiceptin and U69,593 were time- and dose-dependent and antagonist-reversible, suggesting that they were receptor-mediated. Neither morphiceptin nor U69,593 by themselves had any measurable effect on cell viability or DNA fragmentation, and coaddition of opiates at the same time as staurosporine, wortmannin, or LY294002 did not enhance apoptosis. Time course studies indicated a maximal opioid effect at a time (16–24 h) when inhibition of adenylate cyclase had been maximal for many hours. Addition of dibutyryl cyclic AMP either before or at the time of opioid addition protected against apoptosis and reduced fragmentation to levels seen for staurosporine plus dibutyryl cyclic AMP alone. The specificity for cyclic AMP was confirmed by showing protection with the specific agonist Sp-adenosine 3′,5′-cyclic monophosphothioate and increased killing with the antagonist Rp-adenosine 3′,5′-cyclic monophosphothioate. We conclude that the opioid enhancement of apoptosis is based on the inhibition of adenylate cyclase and that the effect is time-dependent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Chronic exposure of embryonic brain to opioids leads to microcephaly and developmental abnormalities. An immortalized mouse neuroblastoma × dorsal root ganglion hybrid cell line stably transfected to overexpress κ-opioid receptors (F-11κ7) showed complete loss of κ-receptor binding to [3H]U69,593 after exposure to the κ-agonist U69,593 for 24 h. U69,593 had no measurable effect on cell viability as determined by either cell viability or DNA fragmentation assays. However, when cell death (apoptosis) was induced by either staurosporine or the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002, cells pretreated with U69,593 for 24 h showed increased apoptosis compared with untreated cells. Thus, staurosporine (50 nM), wortmannin (4 µM), and LY294002 (30 µM) treatment for 24 h induced a 50% loss of cell viability and DNA fragmentation in 24 h. U69,593 pretreatment produced the same killing at lower concentrations, namely, 20 nM staurosporine, 2 µM wortmannin, and 14 µM LY294002, respectively. The effects of U69,593 were time-, dose-, and naloxone-reversible, suggesting that they are receptor-mediated. However, coaddition of U69,593 at the same time as staurosporine, wortmannin, or LY294002 did not enhance apoptosis. All three drugs that induced apoptosis were found to increase the level of ceramide, and pretreatment with U69,593 further increased the rate of formation of ceramide, a lipid that induces apoptosis in cells. We propose that chronic exposure to κ-receptor agonists promotes increased vulnerability of neurons to apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Sporadic Parkinson's disease (PD) affects primarily dopaminergic neurons of the substantia nigra pars compacta. There is evidence of necrotic and apoptotic neuronal death in PD, but the mechanisms behind selected dopaminergic neuronal death remain unknown. The tumor suppressor protein p53 functions to selectively destroy stressed or abnormal cells during life and development by means of necrosis and apoptosis. Activation of p53 leads to death in a variety of cells including neurons. p53 is a target of the nuclear enzyme Poly(ADP-ribose)polymerase (PARP), and PARP is activated following DNA damage that occurs following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP is the favored in vivo model of PD, and reproduces the pathophysiology, anatomy and biochemistry of PD. p53 protein normally exhibits a fleeting half-life, and regulation of p53 stability and activation is achieved mainly by post-translational modification. We find that p53 is heavily poly(ADP-ribosyl)ated by PARP-1 following MPTP intoxication. This post-translational modification serves to stabilize p53 and alters its transactivation of downstream genes. These influences of PARP-1 on p53 may underlie the mechanisms of MPTP-induced parkinsonism and other models of neuronal death.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: One approach to studying the functional role of individual NMDA receptor subunits involves the reduction in the abundance of the protein subunit in neurons. We have pursued a strategy to achieve this goal that involves the use of a small guide RNA which can lead to the destruction of the mRNA for a specific receptor subunit. We designed a small RNA molecule, termed ‘external guide sequence’ (EGS), which binds to the NR1 mRNA and directs the endonuclease RNase P to cleave the target message. This EGS has exquisite specificity and directed the RNase P-dependent cleavage at the targeted location within the NR1 mRNA. To improve the efficiency of this EGS, an in vitro evolution strategy was employed which led to a second generation EGS that was 10 times more potent than the parent molecule. We constructed an expression cassette by flanking the EGS with self-cleaving ribozymes and this permitted generation of the specified EGS RNA sequence from any promoter. Using a recombinant Herpes simplex virus (HSV), we expressed the EGS in neurons and showed the potency of the EGS to reduce NR1 protein within neurons. In an excitotoxicity assay, we showed that expression of the EGS in cortical neurons is neuroprotective. Our results demonstrate the utility of EGSs to reduce the expression of any gene (and potentially any splice variant) in neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The identification of genetic mutations responsible for rare familial forms of Parkinson's disease (PD) have provided tremendous insight into the molecular pathogenesis of this disorder. Mutations in the DJ-1 gene cause autosomal recessive early onset PD in two European families. A Dutch kindred displays a large homozygous genomic deletion encompassing exons 1–5 of the DJ-1 gene, whereas an Italian kindred harbors a single homozygous L166P missense mutation. A homozygous M26I missense mutation was also recently reported in an Ashkenazi Jewish patient with early onset PD. Mutations in DJ-1 are predicted to be loss of function. The recent determination of the crystal structure of human DJ-1 demonstrates that it exists in a homo-dimeric form in vitro, whereas the L166P mutant exists only as a monomer. Here, we examine the in vivo effects of the pathogenic L166P and M26I mutations on the properties of DJ-1 in cell culture. We report that the L166P mutation confers markedly reduced protein stability to DJ-1, which results from enhanced degradation by the 20S/26S proteasome but not from a loss of mRNA expression. Furthermore, the L166P mutant protein exhibits an impaired ability to self-interact to form homo-oligomers. In contrast, the M26I mutation does not appear to adversely affect either protein stability, turnover by the proteasome, or the capacity of DJ-1 to form homo-oligomers. These properties of the L166P mutation may contribute to the loss of normal DJ-1 function and are likely to be the underlying cause of early onset PD in affected members of the Italian kindred.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Poly(ADP-ribose) polymerase-1 is over-activated in the adult brain in response to ischemia and contributes to neuronal death, but its role in perinatal brain injury remains uncertain. To address this issue, 7-day-old wild-type (wt) and PARP-1 gene deficient (parp+/– and parp–/–) Sv129/CD-1 hybrid mice were subjected to unilateral hypoxia-ischemia and histologic damage was assessed 10 days later by two evaluators. Poly(ADP-ribose) polymerase-1 knockout produced moderate but significant (p 〈 0.05) protection in the total group of animals, but analysis by sex revealed that males were strongly protected (p 〈 0.05) in contrast to females in which there was no significant effect. Separate experiments demonstrated that PARP-1 was activated over 1–24 h in both females and males after the insult in neonatal wt mice and rats using immnocytochemistry and western blotting for poly(ADP-ribose). Brain levels of NAD+ were also significantly reduced, but the decrease of NAD+ during the early post-hypoxia-ischemia (HI) phase was only seen in males. The results indicate that hypoxia-ischemia activates Poly(ADP-ribose) polymerase-1 in the neonatal brain and that the sex of the animal strongly influences its role in the pathogenesis of brain injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Human glioma cell line U-373 MG expresses CMP-NeuAc : Galβ1,3GlcNAc α2,3-sialyltransferase [EC No. 2.4.99.6] (α2,3ST), UDP-GlcNAc : β-d-mannoside β1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: β-d-mannoside β1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galβ1,4GlcNAc α2,6-sialyltransferase [EC 2.4.99.1] (α2,6ST) under normal culture conditions. We have previously shown that transfection of the α2,6ST gene into U-373 cells replaced α2,3-linked sialic acids with α2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (〈 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either α2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as α2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 3 (1987), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We provided a water-cornea interface to correct the usual aerial myopia encountered in fundus photography of marine mammal eyes. The 12 Tursiops eyes were consistent for vascular structure, optic papillae, dimensional components and tapetal coloration. Multiple photographs were assembled to produce one ocular fundus typical of Tursiops truncatus and one for Grampus griseus. The eyes have a vestigial hyaloid vessel and an optic disc („blind spot”) that occupies the center of the fundus. The disc is bounded in both species by a vascular structure that is continuous with a (retrobulbar) perineural organ called the ophthalmic rete. The vascular trees of the fundus do not suggest an area of specialization for high resolution. Both species exhibit total tapetalization. Tapetal spectral reflectance did not vary between Tursiops. There was, however, a difference between species in the short wavelength regions of the spectrum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 738 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 8 (1992), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In the laboratory, intraocular pressure (IOP) was measured in each eye of two adult Tursiops truncatus and one Grampus griseus. Measures were made in alternation between eyes over a time span. Means and standard deviations were calculated. Mean IOP's ranged from 33.4 mm Hg (SD = 2.4) in the male Tursiops to 24.6 (SD = 2.3) in the female Tursiops. IOP in the Grampus was intermediate. Tonograph functions for the Tursiops over periods greater than 25 min had a cyclic character with maxima and minima. These cycles were fitted with a polynomial function with periods of 15 min (female) and 20 to 26 min (male). There was no significant correlation of the IOP variations with time between eyes in either Tursiops. Compared to humans, these cetaceans exhibit clinical ocular hypertension bilaterally. The range of pressures they exhibit, over time, is much greater than reported previously for several terrestrial mammals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...