Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Medicine 33 (1982), S. 521-554 
    ISSN: 0066-4219
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 25 (1983), S. 1-7 
    ISSN: 1432-0428
    Keywords: Glucagon ; aging ; glucose tolerance ; insulin clamp ; hyperglycaemic clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To evaluate the role of abnormal glucagon physiology in the glucose intolerance of aging, we have examined: (1) basal glucagon concentration, (2) suppression of plasma glucagon by hyperglycaemia and hyperinsulinaemia, (3) plasma glucagon response to intravenous alanine, (4) glucagon kinetics, and (5) hepatic sensitivity to glucagon (3 ng·kg-1·min-1 for 3 h) using 3-3H-glucose in young (24±1 years), middleaged (41±2 years), and older (62±2 years) subjects. Fasting plasma glucagon levels in 58 young, 21 middle-aged, and 32 older subjects were 89±10, 91±12, and 96±21 pg/ml, respectively (p=NS). Following elevation of plasma glucose to 2.2–6.9 mmol/l above basal for 2 h (hyperglycaemic clamp technique), young, middle-aged, and older subjects showed similar depressions in plasma glucagon levels during all three studies. Elevation of the plasma insulin concentration to approximately 100 mU/l while maintaining euglycaemia (insulin clamp technique) also resulted in a similar decline in plasma glucagon levels in both young and older subjects (by 25±3 and 27±3 pg/ml respectively). Following intravenous alanine infusion, the increase in plasma glucagon was not significantly different in young compared with older subjects (65±16 versus 38±7 pg/ml). Plasma insulin (7±1 versus 8±1 mU/l) and glucose (0.33±0.11 versus 0.50±0.11 mmol/l) responses were comparable in young and older subjects. During continuous glucagon infusion, the steady-state plasma glucagon concentration (267±32 versus 252±12 pg/ml) and the metabolic clearance rate of glucagon (16±1 versus 15±1 ml· kg-1·min-1) were similar in young and older subjects. However, the increase in plasma glucose concentration was significantly greater in the older than young subjects (Δ=1.17±0.11 versus 0.67±0.06 mmol/l, p〈0.01). Basal glucose production in older subjects (0.13 ±0.01 mmol·kg-1·min-1) was slightly less than in the young (0.15±0.01 mmol·kg-1· min-1). However, the rise in glucose production following glucagon was significantly greater in older than young subjects (31±5 versus 18±4%, p〈0.05). In conclusion, (1) basal glucagon levels are not consistently elevated in older subjects, (2) glucagon suppression by both hyperglycaemia and hyperinsulinaemia is similar in young and older subjects, (3) α cell sensitivity to alanine is not affected by age, (4) the metabolic clearance rate of glucagon is similar in young and older subjects, and (5) hepatic sensitivity to a physiological increment in plasma glucagon is increased in older subjects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Insulin-mediated glucose uptake ; glucose oxidation ; non-oxidative glucose disposal ; lipid oxidation ; insulin resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin resistance is a common feature of Type 2 (non-insulin-dependent) diabetes mellitus. This defect in insulin-mediated glucose metabolism could result from a defect in either glucose oxidation or non-oxidative glucose disposal. To examine this question, euglycaemic insulin clamp studies were performed in 16 normal weight Type 2 and 11 age-matched control subjects. In Type 2 diabetic patients the fasting plasma glucose concentration, 8.39±0.50 mmol/l, was allowed to decline (over 54±6 min) to 5.33±0.11 mmol/l before starting the insulin clamp. Total body glucose uptake was significantly decreased in Type 2 diabetic patients vs control subjects (148±15 vs 264±25 mg/min · m2, p〈0.001). Both total glucose oxidation (59±6 vs 89±6 mg/min·m2, p〈0.005) and non-oxidative glucose disposal (89±15 vs 179±24 mg/min · m2, p〈0.005) were significantly reduced in the Type 2 diabetic patients. Basal glucose oxidation was also reduced in the Type 2 diabetic patients (22±3 vs 38±5 mg/min·m2, p〈0.01). In conclusion, during the postabsorptive state and under conditions of euglycaemic hyperinsulinaemia, impairment of glucose oxidation and non-oxidative glucose disposal both contribute to the insulin resistance observed in normal weight Type 2 diabetic patients. Since lipid oxidation was normal in this group of diabetic patients, excessive non-esterified fatty acid oxidation cannot explain the defects in glucose disposal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Chronic hyperinsulinaemia ; chronic hyperglycaemia ; insulin resistance ; insulin secretion ; impaired glycogen synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two study protocols to examine the effects of chronic (72–96 h) physiologic euglycaemic hyperinsulinaemia (+ 72 pmol/l) and chronic hyperglycaemic (+ 1.4 mmol/l) hyperinsulinaemia (+ 78 pmol/l) on insulin sensitivity and insulin secretion were performed in 15 healthy young subjects. Subjects received a three-step euglycaemic insulin (insulin infusion rates = 1.5, 3, and 6 nmol·kg−1·min−1) clamp and a hyperglycaemia (6.9 mmol/l) clamp before and after chronic insulin or glucose infusion. Following 4 days of sustained euglycaemic hyperinsulinaemia whole body glucose disposal decreased by 20–40%. During each insulin clamp step, the defect in insulin action was accounted for by impaired non-oxidative glucose disposal (p〈0.01). Chronic euglycaemic hyperinsulinaemia did not alter insulin-mediated suppression of hepatic glucose production. Following insulin infusion the ability of hyperglycaemia to stimulate insulin secretion was significantly diminished. Following 72 h of chronic glucose infusion (combined hyperglycaemic hyperinsulinaemia), there was no change in whole body glucose disposal. However, glucose oxidation during each insulin clamp step was significantly increased and there was a reciprocal decline in non-oxidative glucose disposal by 25–39% (p〈0.01); suppression of hepatic glucose production by insulin was unaltered by chronic hyperglycaemic hyperinsulinaemia. Chronic glucose infusion increased the plasma insulin response to acute hyperglycaemia more than twofold. These results demonstrate that chronic, physiologic hyperinsulinaemia, whether created by exogenous insulin infusion or by stimulation of endogenous insulin secretion, leads to the development of insulin resistance, which is characterized by a specific defect in the non-oxidative (glycogen synthetic) pathway. These findings indicate that hyperinsulinaemia should be considered, not only as a compensatory response to insulin resistance, but also as a self-perpetuating cause of the defect in insulin action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Leucine ; ketoisocaproate ; insulin ; IGF-I ; protein metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined the effects of recombinant human insulin-like growth factor I (IGF-I) and insulin on the plasma amino acid (AA) profile and leucine kinetics in eight normal subjects. IGF-I was infused at 52 pmol·kg−1·min−1, in combination with prime-continuous [1-14C] leucine infusion, to obtain steady-state plasma concentrations of total (54±3 nmol/l) and free (7.3±1 nmol/l) IGF-I (study 1). In response to IGF-I, plasma AA levels declined by 37±3% (1975±198 to 1368±120 Μmol/l) and total branched chain amino acids (BCAA) declined by 34±3% (390±21 to 256±13 Μmol/l). This hypoaminoacidaemic effect was associated with a decline in endogenous leucine flux of 17±2% (1.88±0.05 to 1.57±0.04 Μmol·kg−1·min−1) and leucine oxidation of 17±1% (0.31±0.02 vs 0.26±0.02 Μmol·kg−1·min−1) (both p〈0.01 vs basal). The same subjects underwent a second study (study 2) in which insulin was infused at 6.22 pmol·kg−1·min−1 to obtain a steady-state plasma insulin concentration of 530±25 pmol/l while maintaining euglycaemia. The infusion rate was designed to match the declines in plasma BCAA levels and leucine turnover observed during IGF-I infusion. The rates of glucose infusion necessary to maintain euglycaemia during IGF-I and insulin infusion were 4.9±1.0 and 7.8±0.6 mg·kg−1 ·min−1, respectively. During insulin infusion total BCAA declined by 39% from 369±23 to 226±20 Μmol/l, leucine flux declined by 16±2% from 1.90±0.05 to 1.61±0.03 Μmol·kg−1·min−1, and leucine oxidation declined by 19±2% from 0.32±0.02 to 0.26±0.02 Μmol·kg−1·min−1. On a molar basis IGF-I was 7.3% as potent as insulin in inhibiting proteolysis. These results demonstrate that in humans: (i) the hypoaminoacidaemic response to IGF-I can be entirely ascribed to the inhibition of proteolysis; (ii) qualitatively, the effects of IGF-I and insulin on plasma AA profile and protein metabolism are similar; (iii) quantitatively, IGF-I is 14-fold less potent than insulin in suppressing protein degradation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 21 (1981), S. 165-171 
    ISSN: 1432-0428
    Keywords: Insulin ; sodium ; kidney ; diabetes ; obesity ; hypertension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Data are discussed which demonstrate that insulin plays an important role in sodium metabolism. The primary action of insulin on sodium balance is exerted on the kidney. Increases in plasma insulin concentration within the physiological range stimulate sodium reabsorption by the distal nephron segments and this effect is independent of changes in circulating metabolites or other hormones. Several clinical situations are reviewed: sodium wasting in poorly controlled diabetics, natriuresis of starvation, anti-natriuresis of refeeding and hypertension of obesity, in which insulin-mediated changes in sodium balance have been shown to play an important pathophysiological role.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 39 (1996), S. 1345-1350 
    ISSN: 1432-0428
    Keywords: Keywords Insulin resistance ; coronary artery disease ; glucose metabolism ; hyperinsulinaemia.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of the present study was to quantitate insulin-mediated glucose disposal in normal glucose tolerant patients with angiographically documented coronary artery disease (CAD) and to define the pathways responsible for the insulin resistance. We studied 13 healthy, normal weight, normotensive subjects with angiographically documented CAD and 10 age-, weight-matched control subjects with an oral glucose tolerance test and a 2-h euglycaemic insulin (40 mU · m−2· min−1) clamp with tritiated glucose and indirect calorimetry. Lean body mass was measured with tritiated water. All CAD and control subjects had a normal oral glucose tolerance test. Fasting plasma insulin concentration (66 ± 6 vs 42 ± 6 pmol/l, p 〈 0.05) and area under the plasma insulin curve following glucose ingestion (498 ± 54 vs 348 ± 42 pmol · l−1· min−1, p 〈 0.001) were increased in CAD vs control subjects. Insulin-mediated whole body glucose disposal (27.8 ± 3.9 vs 38.3 ± 4.4 μmol · kg fat free mass (FFM)−1· min−1, p 〈 0.01) was significantly decreased in CAD subjects and this was entirely due to diminished non-oxidative glucose disposal (8.9 ± 2.8 vs 20.0 ± 3.3 μmol · kg FFM−1· min−1, p 〈 0.001). The magnitude of insulin resistance was positively correlated with the severity of CAD (r = 0.480, p 〈 0.05). In the CAD subjects basal and insulin-mediated rates of glucose and lipid oxidation were normal and insulin caused a normal suppression of hepatic glucose production. In conclusion, subjects with angiographically documented CAD are characterized by moderate-severe insulin resistance and hyperinsulinaemia and should be included in the metabolic and cardiovascular cluster of disorders that comprise the insulin resistance syndrome or ’syndrome X'. [Diabetologia (1996) 39: 1345–1350]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0428
    Keywords: Keywords Hexosamines ; insulin ; glucose ; diabetes mellitus.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glutamine:fructose 6-phosphate amidotransferase (GFA) is rate-limiting for hexosamine biosynthesis, while a UDP-GlcNAc β-N-acetylglucosaminyltransferase (O-GlcNAc transferase) catalyses final O-linked attachment of GlcNAc to serine and threonine residues on intracellular proteins. Increased activity of the hexosamine pathway is a putative mediator of glucose-induced insulin resistance but the mechanisms are unclear. We determined whether O-GlcNAc transferase is found in insulin-sensitive tissues and compared its activity to that of GFA in rat tissues. We also determined whether non-insulin-dependent diabetes mellitus (NIDDM) or acute hyperinsulinaemia alters O-GlcNAc transferase activity in human skeletal muscle. O-GlcNAc transferase was measured using 3H-UDP-GlcNAc and a synthetic cationic peptide substrate containing serine and threonine residues, and GFA was determined by measuring a fluorescent derivative of GlcN6P by HPLC. O-GlcNAc transferase activities were 2–4 fold higher in skeletal muscles and the heart than in the liver, which had the lowest activity, while GFA activity was 14–36-fold higher in submandibular gland and 5–18 fold higher in the liver than in skeletal muscles or the heart. In patients with NIDDM (n = 11), basal O-GlcNAc transferase in skeletal muscle averaged 3.8 ± 0.3 nmol/mg · min, which was not different from that in normal subjects (3.3 ± 0.4 nmol/mg · min). A 180-min intravenous insulin infusion (40 mU/m2· min) did not change muscle O-GlcNAc transferase activity in either group. We conclude that O-GlcNAc transferase is widely distributed in insulin-sensitive tissues in the rat and is also found in human skeletal muscle. These findings suggest the possibility that O-linked glycosylation of intracellular proteins is involved in mediating glucose toxicity. O-GlcNAc transferase does not, however, appear to be regulated by either NIDDM or acute hyperinsulinaemia, suggesting that mass action effects determine the extent of O-linked glycosylation under hyperglycaemic conditions. [Diabetologia (1997) 40: 76–81]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0428
    Keywords: Keywords Hyperglycaemia ; mass action effect ; glucose-mediated glucose metabolism ; glucose oxidation ; non-oxidative glucose metabolism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The ability of hyperglycaemia to enhance glucose uptake was evaluated in 9 non-insulin-dependent (NIDDM), 7 insulin-dependent (IDDM) diabetic subjects, and in 6 young and 9 older normal volunteers. Following overnight insulin-induced euglycaemia, a sequential three-step hyperglycaemic clamp (+ 2.8 + 5.6, and + 11.2 mmol/l above baseline) was performed with somatostatin plus replacing doses of basal insulin and glucagon, 3-3H-glucose infusion and indirect calorimetry. In the control subjects as a whole, glucose disposal increased at each hyperglycaemic step (13.1 ± 0.6, 15.7 ± 0.7, and 26.3 ± 1.1 μmol/kg · min). In NIDDM (10.5 ± 0.2, 12.1 ± 1.0, and 17.5 ± 1.1 μmol/kg · min), and IDDM (11.2 ± 0.8, 12.9 ± 1.0, and 15.6 ± 1.1 μmol/kg · min) glucose disposal was lower during all three steps (p 〈 0.05–0.005). Hepatic glucose production declined proportionally to plasma glucose concentration to a similar extent in all four groups of patients. In control subjects, hyperglycaemia stimulated glucose oxidation (+ 4.4 ± 0.7 μmol/kg · min) only at + 11.2 mmol/l (p 〈 0.05), while non-oxidative glucose metabolism increased at each hyperglycaemic step (+ 3.1 ± 0.7; + 3.5 ± 0.9, and + 10.8 ± 1.7 μmol/kg · min; all p 〈 0.05). In diabetic patients, no increment in glucose oxidation was elicited even at the highest hyperglycaemic plateau (IDDM = + 0.5 ± 1.5; NIDDM = + 0.2 ± 0.6 μmol/kg · min) and non-oxidative glucose metabolism was hampered (IDDM = + 1.8 ± 1.5, + 3.1 ± 1.7, and + 4.3 ± 1.8; NIDDM = + 0.7 ± 0.6, 2.1 ± 0.9, and + 7.0 ± 0.8 μmol/kg · min; p 〈 0.05–0.005). Blood lactate concentration increased and plasma non-esterified fatty acid (NEFA) fell in control (p 〈 0.05) but not in diabetic subjects. The increments in blood lactate were correlated with the increase in non-oxidative glucose disposal and with the decrease in plasma NEFA. In conclusion: 1) the ability of hyperglycaemia to promote glucose disposal is impaired in NIDDM and IDDM; 2) stimulation of glucose oxidation and non-oxidative glucose metabolism accounts for glucose disposal; 3) both pathways of glucose metabolism are impaired in diabetic patients; 4) impaired ability of hyperglycaemia to suppress plasma NEFA is present in these patients. These results suggest that glucose resistance, that is the ability of glucose itself to promote glucose utilization, is impaired in both IDDM and NIDDM patients. [Diabetologia (1997) 40: 687–697]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0428
    Keywords: Type 1 and Type 2 diabetes ; insulin resistance ; insulin-mediated glucose metabolism ; glucose clearance ; hepatic glucose production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Hepatic glucose production (3H-glucose technique) and insulin-mediated glucose uptake (insulin clamp technique) were measured in 38 Type 2 (non-insulin-dependent) and 11 Type 1 (insulin-dependent) diabetic patients. Fasting plasma glucose concentration was 8.3 ± 0.5 mmol/l in the former, and 9.6 ± 1.3 mmol/1 in the latter group; the respective fasting plasma insulin levels were 19 ± 2 mU/l (p 〈 0.005 versus 13 ± 1 mU/l in 33 age-matched control subjects), and 9 ± 1 mU/l (p 〈 0.01 versus 14 ± 1 mU/l in 36 younger control subjects). In the fasting state, hepatic glucose production was slightly increased (15%, 0.1 〉 p 〉 0.05) in the Type 2 diabetic patients and markedly elevated (65%, p 〈 0.001) in the Type 1 patients compared with their respective control groups. In both groups of diabetic subjects, the rates of hepatic glucose production were inappropriately high for the prevailing plasma glucose and insulin levels, indicating the presence of hepatic resistance to insulin. Basal plasma glucose clearance was also significantly reduced in both the Type 2 (34%) and the Type 1 (14%) diabetic subjects. The fasting plasma glucose concentration correlated directly with hepatic glucose production, and inversely with plasma glucose clearance. During the insulin clamp, plasma insulin was maintained at approximately 100 mU/l in all groups, while plasma glucose was maintained constant at the respective fasting levels. Total glucose uptake was reduced in both the Type 2 (4.57 ± 0.31 versus 6.39 ± 0.25 mg · min–1 · kg–1 in the control subjects, p 〈 0.01) and the Type 1 (4.77 ± 0.48 versus 7.03 ± 0.22 mg · min–1 · kg–1, p 〈 0.01) diabetic patients. Insulin-stimulated glucose clearance was reduced to a similar extent in Type 2 (54%) and Type 1 (61%) diabetic subjects, and correlated directly with fasting glucose clearance. These results show that insulin resistance is a common feature of both types of diabetes and can be demonstrated in the basal as well as the insulin-stimlated state. Both hepatic and peripheral resistance to the action of insulin contribute to diabetic hyperglycaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...