Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 14 (1981), S. 154-162 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 15 (1982), S. 160-165 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 14 (1981), S. 1688-1692 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta neurochirurgica 105 (1990), S. 98-106 
    ISSN: 0942-0940
    Keywords: Cerebral blood flow ; Subarachnoid haemorrhage ; cerebral vasospasm ; age affect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A total of 226 measurements of cerebral blood flow (CBF) were performed in 96 postoperative patients with aneurysmal subarachnoid haemorrhage (SAH). The global CBF was significantly reduced in the first week after SAH, and the extent of the CBF reduction was less in the patients with good outcome than in those with fair/ poor outcome. The good outcome patients showed a progressive increase in CBF in the following 3 weeks. Although the CBF decreased further in the second week in some of those patients, it turned to a steady increase thereafter. On the other hand, in the fair/poor outcome patients CBF remained far below the normal control value for at least 3 months after SAH. When looking into the effect of age on CBF in the patients with good outcome, those in their thirties and forties had a significantly reduced CBF during the first 2 weeks, whereas in those in their fifties and sixties a significant reduction persisted for 3 months to 1 year after SAH. Management of the older patients needs special attention even if they are apparently in good clinical condition, since the CBF threshold to ischaemia is diminished.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Key words Chronic hyperinsulinaemia ; chronic hyperglycaemia ; insulin resistance ; insulin secretion ; impaired glycogen synthesis.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two study protocols to examine the effects of chronic (72–96 h) physiologic euglycaemic hyperinsulinaemia (+ 72 pmol/l) and chronic hyperglycaemic (+ 1.4 mmol/l) hyperinsulinaemia (+ 78 pmol/l) on insulin sensitivity and insulin secretion were performed in 15 healthy young subjects. Subjects received a three-step euglycaemic insulin (insulin infusion rates = 1.5, 3, and 6 nmol · kg−1· min−1) clamp and a hyperglycaemia (6.9 mmol/l) clamp before and after chronic insulin or glucose infusion. Following 4 days of sustained euglycaemic hyperinsulinaemia whole body glucose disposal decreased by 20–40 %. During each insulin clamp step, the defect in insulin action was accounted for by impaired non-oxidative glucose disposal (p 〈 0.01). Chronic euglycaemic hyperinsulinaemia did not alter insulin-mediated suppression of hepatic glucose production. Following insulin infusion the ability of hyperglycaemia to stimulate insulin secretion was significantly diminished. Following 72 h of chronic glucose infusion (combined hyperglycaemic hyperinsulinaemia), there was no change in whole body glucose disposal. However, glucose oxidation during each insulin clamp step was significantly increased and there was a reciprocal decline in non-oxidative glucose disposal by 25–39 % (p 〈 0.01); suppression of hepatic glucose production by insulin was unaltered by chronic hyperglycaemic hyperinsulinaemia. Chronic glucose infusion increased the plasma insulin response to acute hyperglycaemia more than twofold. These results demonstrate that chronic, physiologic hyperinsulinaemia, whether created by exogenous insulin infusion or by stimulation of endogenous insulin secretion, leads to the development of insulin resistance, which is characterized by a specific defect in the non-oxidative (glycogen synthetic) pathway. These findings indicate that hyperinsulinaemia should be considered, not only as a compensatory response to insulin resistance, but also as a self-perpetuating cause of the defect in insulin action. [Diabetologia (1994) 37: 1025–1035]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0428
    Keywords: Chronic hyperinsulinaemia ; chronic hyperglycaemia ; insulin resistance ; insulin secretion ; impaired glycogen synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two study protocols to examine the effects of chronic (72–96 h) physiologic euglycaemic hyperinsulinaemia (+ 72 pmol/l) and chronic hyperglycaemic (+ 1.4 mmol/l) hyperinsulinaemia (+ 78 pmol/l) on insulin sensitivity and insulin secretion were performed in 15 healthy young subjects. Subjects received a three-step euglycaemic insulin (insulin infusion rates = 1.5, 3, and 6 nmol·kg−1·min−1) clamp and a hyperglycaemia (6.9 mmol/l) clamp before and after chronic insulin or glucose infusion. Following 4 days of sustained euglycaemic hyperinsulinaemia whole body glucose disposal decreased by 20–40%. During each insulin clamp step, the defect in insulin action was accounted for by impaired non-oxidative glucose disposal (p〈0.01). Chronic euglycaemic hyperinsulinaemia did not alter insulin-mediated suppression of hepatic glucose production. Following insulin infusion the ability of hyperglycaemia to stimulate insulin secretion was significantly diminished. Following 72 h of chronic glucose infusion (combined hyperglycaemic hyperinsulinaemia), there was no change in whole body glucose disposal. However, glucose oxidation during each insulin clamp step was significantly increased and there was a reciprocal decline in non-oxidative glucose disposal by 25–39% (p〈0.01); suppression of hepatic glucose production by insulin was unaltered by chronic hyperglycaemic hyperinsulinaemia. Chronic glucose infusion increased the plasma insulin response to acute hyperglycaemia more than twofold. These results demonstrate that chronic, physiologic hyperinsulinaemia, whether created by exogenous insulin infusion or by stimulation of endogenous insulin secretion, leads to the development of insulin resistance, which is characterized by a specific defect in the non-oxidative (glycogen synthetic) pathway. These findings indicate that hyperinsulinaemia should be considered, not only as a compensatory response to insulin resistance, but also as a self-perpetuating cause of the defect in insulin action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0428
    Keywords: Keywords Hyperglycaemia ; mass action effect ; glucose-mediated glucose metabolism ; glucose oxidation ; non-oxidative glucose metabolism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The ability of hyperglycaemia to enhance glucose uptake was evaluated in 9 non-insulin-dependent (NIDDM), 7 insulin-dependent (IDDM) diabetic subjects, and in 6 young and 9 older normal volunteers. Following overnight insulin-induced euglycaemia, a sequential three-step hyperglycaemic clamp (+ 2.8 + 5.6, and + 11.2 mmol/l above baseline) was performed with somatostatin plus replacing doses of basal insulin and glucagon, 3-3H-glucose infusion and indirect calorimetry. In the control subjects as a whole, glucose disposal increased at each hyperglycaemic step (13.1 ± 0.6, 15.7 ± 0.7, and 26.3 ± 1.1 μmol/kg · min). In NIDDM (10.5 ± 0.2, 12.1 ± 1.0, and 17.5 ± 1.1 μmol/kg · min), and IDDM (11.2 ± 0.8, 12.9 ± 1.0, and 15.6 ± 1.1 μmol/kg · min) glucose disposal was lower during all three steps (p 〈 0.05–0.005). Hepatic glucose production declined proportionally to plasma glucose concentration to a similar extent in all four groups of patients. In control subjects, hyperglycaemia stimulated glucose oxidation (+ 4.4 ± 0.7 μmol/kg · min) only at + 11.2 mmol/l (p 〈 0.05), while non-oxidative glucose metabolism increased at each hyperglycaemic step (+ 3.1 ± 0.7; + 3.5 ± 0.9, and + 10.8 ± 1.7 μmol/kg · min; all p 〈 0.05). In diabetic patients, no increment in glucose oxidation was elicited even at the highest hyperglycaemic plateau (IDDM = + 0.5 ± 1.5; NIDDM = + 0.2 ± 0.6 μmol/kg · min) and non-oxidative glucose metabolism was hampered (IDDM = + 1.8 ± 1.5, + 3.1 ± 1.7, and + 4.3 ± 1.8; NIDDM = + 0.7 ± 0.6, 2.1 ± 0.9, and + 7.0 ± 0.8 μmol/kg · min; p 〈 0.05–0.005). Blood lactate concentration increased and plasma non-esterified fatty acid (NEFA) fell in control (p 〈 0.05) but not in diabetic subjects. The increments in blood lactate were correlated with the increase in non-oxidative glucose disposal and with the decrease in plasma NEFA. In conclusion: 1) the ability of hyperglycaemia to promote glucose disposal is impaired in NIDDM and IDDM; 2) stimulation of glucose oxidation and non-oxidative glucose metabolism accounts for glucose disposal; 3) both pathways of glucose metabolism are impaired in diabetic patients; 4) impaired ability of hyperglycaemia to suppress plasma NEFA is present in these patients. These results suggest that glucose resistance, that is the ability of glucose itself to promote glucose utilization, is impaired in both IDDM and NIDDM patients. [Diabetologia (1997) 40: 687–697]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0428
    Keywords: Keywords P-selectin ; E-selectin ; diabetic nephropathy ; advanced glycation endproducts ; macrophage.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In diabetic nephropathy leukocytes, mainly composed of monocytes/macrophages, which accumulate in the glomeruli and the interstitium, play an important part in the progression of glomerulosclerosis. The infiltration of leukocytes into inflammatory tissues or atherosclerotic lesions is mediated by adhesion molecules, which are expressed on the vascular endothelial cells, although little is known about the mechanism of leukocyte infiltration into diabetic renal tissues. P- and E-selectin are leukocyte adhesion molecules, which are expressed on the vascular endothelial cells and promote the adhesion of leukocytes to the endothelium. We investigated the expression of P- and E-selectin in the kidney tissue of patients with diabetic nephropathy and compared it with that of patients with other glomerular diseases (minimal change nephrotic syndrome, membranous nephropathy, IgA nephropathy, mesangioproliferative glomerulonephritis, and lupus nephritis). Expression of P- and E-selectin were both significantly increased in the glomeruli and the interstitium of patients with diabetic nephropathy as compared with those with other glomerular diseases. P- and E-selectin were both expressed along the glomerular capillaries and the peritubular capillaries in the interstitium. Neither P- nor E-selectin were correlated with the number of infiltrated leukocytes in the glomeruli, however, interestingly the E-selectin expression on peritubular capillaries was correlated with the number of infiltrated CD14 positive cells in the interstitium. These results suggest that E-selectin may play a key role in leukocyte infiltration into the renal interstitium in patients with diabetic nephropathy. [Diabetologia (1998) 41: 185–192]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0428
    Keywords: Keywords Nitric oxide (NO) ; endothelial cell nitric oxide synthase (ecNOS) ; diabetic nephropathy ; afferent arterioles ; glomerular hyperfiltration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The overproduction of nitric oxide (NO) is reported in the diabetic kidney and considered to be involved in glomerular hyperfiltration. The precise mechanism of NO production in the diabetic kidney is, however, not known. In this report, we compare the localization of endothelial cell nitric oxide synthase (ecNOS) isoform expression in the kidney tissue of streptozotocin (STZ)-induced diabetic rats and 5/6 nephrectomized rats and clarify the pivotal role of ecNOS for the glomerular hyperfiltration in the early stages of diabetic nephropathy. In diabetic rats, the diameters of afferent arterioles, the glomerular volume, creatinine clearance, and urinary NO2/NO3 were increased after the induction of diabetes. Efferent arterioles were, however, not altered. Insulin or L-NAME treatment returned the diameters of afferent arterioles, glomerular volume, creatinine clearance, and urinary NO2/NO3 to normal. The expression of ecNOS in afferent arterioles and glomeruli of diabetic rats increased during the early stages of the disease, but was not altered in efferent arterioles. Treatment with either insulin or L-NAME decreased ecNOS expression in afferent arterioles and in glomeruli. In contrast, the ecNOS expression was upregulated in both afferent and efferent arterioles and in the glomeruli of 5/6 nephrectomized rats, where the dilatation of afferent and efferent arterioles and glomerular enlargement were observed. Treatment with L-NAME ameliorated the ecNOS expression and dilatation of arterioles. We conclude that enhanced NO synthesis by ecNOS in afferent arterioles and glomerular endothelial cells in response to the hyperglycaemic state could cause preferential dilatation of afferent arterioles, which ultimately induces glomerular enlargement and glomerular hyperfiltration. [Diabetologia (1998) 41: 1426–1434]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 39 (1996), S. 1345-1350 
    ISSN: 1432-0428
    Keywords: Keywords Insulin resistance ; coronary artery disease ; glucose metabolism ; hyperinsulinaemia.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of the present study was to quantitate insulin-mediated glucose disposal in normal glucose tolerant patients with angiographically documented coronary artery disease (CAD) and to define the pathways responsible for the insulin resistance. We studied 13 healthy, normal weight, normotensive subjects with angiographically documented CAD and 10 age-, weight-matched control subjects with an oral glucose tolerance test and a 2-h euglycaemic insulin (40 mU · m−2· min−1) clamp with tritiated glucose and indirect calorimetry. Lean body mass was measured with tritiated water. All CAD and control subjects had a normal oral glucose tolerance test. Fasting plasma insulin concentration (66 ± 6 vs 42 ± 6 pmol/l, p 〈 0.05) and area under the plasma insulin curve following glucose ingestion (498 ± 54 vs 348 ± 42 pmol · l−1· min−1, p 〈 0.001) were increased in CAD vs control subjects. Insulin-mediated whole body glucose disposal (27.8 ± 3.9 vs 38.3 ± 4.4 μmol · kg fat free mass (FFM)−1· min−1, p 〈 0.01) was significantly decreased in CAD subjects and this was entirely due to diminished non-oxidative glucose disposal (8.9 ± 2.8 vs 20.0 ± 3.3 μmol · kg FFM−1· min−1, p 〈 0.001). The magnitude of insulin resistance was positively correlated with the severity of CAD (r = 0.480, p 〈 0.05). In the CAD subjects basal and insulin-mediated rates of glucose and lipid oxidation were normal and insulin caused a normal suppression of hepatic glucose production. In conclusion, subjects with angiographically documented CAD are characterized by moderate-severe insulin resistance and hyperinsulinaemia and should be included in the metabolic and cardiovascular cluster of disorders that comprise the insulin resistance syndrome or ’syndrome X'. [Diabetologia (1996) 39: 1345–1350]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...