Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Primary motor cortex ; Muscle representation ; Movements ; Forelimb organization ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The EMG in 8 to 14 hand, forearm, and arm muscles evoked by intracortical electrical stimulation was recorded at 433 sites in layer V in the region of the forelimb area of the primary motor cortex (MI) of three squirrel monkeys during ketamine anesthesia. At each site, the EMG was recorded at movement threshold (T) and at 1.5T and 2T at each site (but ≤60 μA), and the threshold movement was noted. In the animals examined, the total MI forelimb area identified by movements or EMG occupied about 25 to 35 mm2. At most sites from which a forelimb movement was evoked, EMG activity was evoked in one or more of the recorded muscles. One group of sites located rostrolaterally to the main forelimb area was separated by an intervening zone largely related to the face. The average area from which digit, wrist, elbow, or shoulder movement was evoked at threshold was nearly the same, and their movement thresholds were not significantly different. Average movement thresholds across the anterior-posterior extent of MI were also similar. All muscles recorded could be activated by cortical stimulation. Most commonly more than one muscle was activated from a single site. The highest individual EMG levels were produced at sites from which more than one muscle was activated. These results suggest that small regions of MI influence multiple muscles. Individual muscles were typically activated at multiple, spatially separated locations. For many muscles, increasing the stimulation intensity revealed additional separate areas of activation. Spatial locations of different muscles showed considerable interanimal variation. The size of most muscle representations was relatively large. The smallest representations always included the intrinsic hand muscles and the largest included the proximal muscles. Orderly topographic relationships among forelimb joints or muscles within the MI forelimb area were not apparent. Although distal muscle activation tended to be found posteriorly in the forelimb area and proximal muscles tended to be activated from anterior sites, both could be activated from broadly distributed and overlapping areas. The broad, overlapping nature of the muscle representation supports the concept that a small region of cortex is involved in controlling functional groups of muscles. The intermingling of muscle representations may provide a substrate for local cortical interactions among territories representing various muscle synergies or for changing associations of muscle groups. The representation plan derived from these mappings contains elements of all previously described summaries of MI organization. We argue that none of these adequately summarizes the internal organization of the MI forelimb area. Instead, patterns of organization that include functional combinations of muscles must be considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Motor cortex ; Motor representation ; Peripheral nerve injury ; Neural plasticity ; Motor control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary These experiments examined the ability of the adult motor cortex to reorganize its relationship with somatic musculature following nerve lesions. Cortical motor output organization was assessed by mapping the areal extent of movements evoked by intracortical electrical stimulation in anesthetized rats. Output patterns of the motor cortex of normal rats were compared with those of adult rats that had received either a forelimb amputation or a facial motor nerve transection 1 week to 4 months earlier. In both experimental conditions the extent of some representations increased. Stimulation thresholds required to elicit movements in expanded representations were at or below normal levels. After forelimb amputation, the area from which shoulder movements could be evoked at low thresholds enlarged. Sectioning of the branches of the facial nerve that innervate the vibrissa musculature enlarged the motor cortex forelimb and eye/eyelid output areas; these enlargements appeared to occupy the former vibrissa area. These results indicate that the amount of cortex controlling a group of muscles and the strength of the relationship between a cortical locus with its target muscles is modified by nerve lesions in adult mammals. They also show that motor nerve lesions are sufficient to produce this change and that the changes can appear as early as 7 days following a peripheral nerve injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Motor cortex ; Somatotopic representations ; Peripheral nerve injury ; Neural plasticity ; Motor control ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the accompanying paper (Sanes et al. 1989), we demonstrated that the map of motor cortex (MI) output was reorganized when examined 1 week to 4 months after a motor nerve lesion in adult rats. The present experiments measured the extent of functional reorganization that occurs within the first hours after this lesion. Shifts in MI output were examined by testing the effect of stimulation at a site in MI vibrissa area before and up to 10 h after nerve section of the branches of the facial nerve that innervate the vibrissa. Immediately following nerve transection, no movement or forelimb EMG activity was evoked by intracortical electrical stimulation within the vibrissa area. Within hours of the nerve transection, however, stimulation elicited forelimb EMG responses that were comparable to those obtained by stimulating within the pre-transection forelimb area. Remapping of MI after nerve transection indicated that the forelimb boundary had shifted about 1 mm medially from its original location into the former vibrissa territory. Forelimb EMG could be evoked for up to 10 h within this reorganized cortex. These results indicated that the output circuits of MI can be quickly reorganized by nerve lesions in adult mammals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 43 (1981), S. 330-336 
    ISSN: 1432-1106
    Keywords: Axoplasmic transport ; Neocortex ; Opossum ; Parietal cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The size, shape and laminar position of efferent neurons in the parietal cortex of the Virginia opossum were identified using the method of retrograde transport of horseradish peroxidase (HRP). Injection of HRP into the spinal cord, dorsal column nuclei or pontine nuclei leads to labeling of cells in layer V and occasionally in layer VI, while a large injection of HRP in the dorsal thalamus labels many cells in layer VI, with fewer cells in layer V. HRP injections in the SSM cortex label cells in layers II-VI of ipsilateral and contralateral cortical areas. However, the majority of these cortico-cortical cells are found in the supragranular layers. Examination of the size, shape and laminar position of retrogradely labeled layer V neurons after injections in each of these areas suggests that none of these features can be used to predict accurately the projection target of individual neurons. We conclude that the laminar organization of efferent cells of the opossum parietal cortex is very similar to that seen in the neocortex of other mammals, despite the complete coalescence of somatic sensory (SI) and motor (MI) areas in the opossum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Substantia nigra ; Nigra projection neurons ; Axon collaterals ; Antidromic activation ; Collateral inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Substantia nigra pars reticulata (SNr) neurons, antidromically activated following stimulation of the dorsal thalamus and/or superior colliculus were intracellularly stained with HRP. Light microscopic analysis revealed that the labeled SNr neurons have axon collaterals arborizing within SNr. Axon collaterals of SNr neurons partially overlapped with the dendritic fields of their parent cells and also extended beyond the parent dendritic fields. The labeled axon terminals did not closely appose the parent cell processes, suggesting that the collaterals most likely terminate on neurons other than the parent cell. Electrical stimulation of either the thalamus or the superior colliculus induced monosynaptic and polysynaptic IPSPs in SNr cells. The polysynaptic IPSPs evoked from thalamic stimulation disappeared following hemitransection of the brain just rostral to the thalamus while the monosynaptic IPSPs remained the same. Since there are no known afferents from either thalamus or superior colliculus to SNr, we consider that these monosynaptic IPSPs are due to activation of the recurrent collaterals of SNr projection cells. The results of this study indicate that projection neurons of SNr also have an inhibitory role within the SNr.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...