Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Immunological reviews 166 (1998), S. 0 
    ISSN: 1600-065X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary: Whirling disease of rainbow trout is caused by Myxobolus cerebralis, a myxozoan parasite possessing a life cycle well adapted to the natural environments where salmonid fish are found. Whirling disease was first described in Europe in 1898 among farmed rainbow trout but recent occurrences have been devastating to wild trout in North America. The disease is considered a major threat to survival of wild rainbow trout in the intermountain west of the United States. Difficulties in containing the spread and potentially eliminating the pathogen are tied to features of a complex life cycle involving two hosts, the salmonid fish and an aquatic oligochaete. Details of the morphologic development of the parasite have been described in each host but only now are we beginning to appreciate the breadth of interactions between these developmental forms and the sequential responses of the host. Fundamental mechanisms of the recognition and attachment of the parasite to the hosts, how host immunity is evaded and the unknown influences of environmental factors all contribute to a rather poor understanding of the biology of the parasite. Although the biology and ecology of the salmonid host are better known than for the oligochaete host, our knowledge is inadequate to interpret their complex interactions with the parasite. This uncertainty precludes the development of effective management activities designed to enhance the viability and productivity of wild trout populations in M. cerebralis- positive river systems. Improving our understanding of the hosts, the parasite and the environmental factors determining their interaction should provide for more focused and effective control methods for containing the spread and devastating effects whirling disease is causing to our wild trout populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in turn this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the oligochaete, Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan, Tetracapsula bryosahnonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that:l) the Myxozoa are closely related to Cnidaria (also supported by morphological data); 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan, rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist); and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis, Ceratomyxa shasta, Kudoa spp., and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans, which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1955
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Myxobolus cerebralis (Myxozoa: Myxosporea) has a complex two-host life cycle, which begins when waterborne triactinomyxon spores released from the infected oligochaete Tubifex tubifex contact a susceptible trout. Upon contact the triactinomyxon spores attach to the fish and release their sporoplasm cells into the epidermis. At approximately 50 days postinfection, sporogenesis begins, resulting in a large number of M. cerebralis spores in the cartilage of infected fish 6 weeks later. The spores of M. cerebralis can be released from infected fish only after the fish die or are eaten by predators. In both cases, spores released into the aquatic environment can be ingested by oligochaete worms of the species T. tubifex and then develop into the actinosporean triactinomyxon stage in the intestine within about 3 months. The triactinomyxon is the only stage infectious for salmonid fish. We determined the DNA concentration in sporoplasm cells, capsulogenic cells, and valvogenic cells of M. cerebralis spore stages from the trout and of triactinomyxon spore stages from T. tubifex. DNA was visualized using the DNA-specific fluorescent stain DAPI. Our results demonstrate that meiosis occurs only once in the developmental cycle of M. cerebralis in contrast to the previously published hypothesis. This takes place within the pansporocyst found in T. tubifex. Thereafter, the sporoplasm cells of the triactinomyxon spores in T. tubifex and M. cerebralis in trout are diploid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...