Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Functional magnetic resonance imaging (fMRI) was used to localize brain areas that were active during the observation of actions made by another individual. Object- and non-object-related actions made with different effectors (mouth, hand and foot) were presented. Observation of both object- and non-object-related actions determined a somatotopically organized activation of premotor cortex. The somatotopic pattern was similar to that of the classical motor cortex homunculus. During the observation of object-related actions, an activation, also somatotopically organized, was additionally found in the posterior parietal lobe. Thus, when individuals observe an action, an internal replica of that action is automatically generated in their premotor cortex. In the case of object-related actions, a further object-related analysis is performed in the parietal lobe, as if the subjects were indeed using those objects. These results bring the previous concept of an action observation/execution matching system (mirror system) into a broader perspective: this system is not restricted to the ventral premotor cortex, but involves several somatotopically organized motor circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 91 (1992), S. 176-180 
    ISSN: 1432-1106
    Keywords: Hand action encoding ; Visual responses ; Premotor cortex ; Macaque monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurons of the rostral part of inferior premotor cortex of the monkey discharge during goal-directed hand movements such as grasping, holding, and tearing. We report here that many of these neurons become active also when the monkey observes specific, meaningful hand movements performed by the experimenters. The effective experimenters' movements include among others placing or retrieving a piece of food from a table, grasping food from another experimenter's hand, and manipulating objects. There is always a clear link between the effective observed movement and that executed by the monkey and, often, only movements of the experimenter identical to those controlled by a given neuron are able to activate it. These findings indicate that premotor neurons can retrieve movements not only on the basis of stimulus characteristics, as previously described, but also on the basis of the meaning of the observed actions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 89 (1992), S. 686-690 
    ISSN: 1432-1106
    Keywords: Body-centered visual receptive fields ; Spacecoding ; Visually guided movements ; Premotor cortex ; Macaque monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Many neurons in inferior area 6, a cortical premotor area, respond to visual stimuli presented in the space around the animal. We were interested to learn whether the receptive fields of these neurons are coded in retinotopic or in body-centered coordinates. To this purpose we recorded single neurons from inferior area 6 (F4 sector) in a monkey trained to fixate a light and detect its dimming. During fixation visual stimuli were moved towards the monkey both within and outside the neurons's receptive field. The fixation point was then moved and the neuron retested with the monkey's gaze deviated to the new location. The results showed that most inferior area 6 visual neurons code the stimulus position in spatial and not in retinal coordinates. It is proposed that these visual neurons are involved in generating the stable body-centered frame of reference necesary for programming visually guided movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Positron emission tomography ; Activation study ; Hand grasping movements ; Area 45 ; Superior temporal sulcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Positron emission tomography (PET) was used to localize brain regions that are active during the observation of grasping movements. Normal, right-handed subjects were tested under three conditions. In the first, they observed grasping movements of common objects performed by the experimenter. In the second, they reached and grasped the same objects. These two conditions were compared with a third condition consisting of object observation. On the basis of monkey data, it was hypothesized that during grasping observation, activations should be present in the region of the superior temporal sulcus (STS) and in inferior area 6. The findings in humans demonstrated that grasp observation significantly activates the cortex of the middle temporal gyrus including that of the adjacent superior temporal sulcus (Brodmann's area 21) and the caudal part of the left inferior frontal gyrus (Brodmann's area 45). The possible functional homologies between these areas and the monkey STS region and frontal area F5 are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...