Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 11 (1990), S. 77-81 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Different soils are known to affect the amount and distribution of both available water and roots. Optimising irrigation water use, especially when shallow water-tables are present requires accurate knowledge of the root zone dynamics. This study was conducted to determine the effect of two soil types on root growth, soil water extraction patterns, and contributions of a water-table to crop evaporation (E). Two weighing lysimeters (L1 and L2) with undisturbed blocks of soil were used. The soil in L1 had higher hydraulic conductivity and lower bulk density than that in L2. Well watered conditions were maintained by irrigation for the first 110 days from sowing (DFS). Root length density (RLD) was calculated from observations made in clear acrylic tubes installed into the sides of the lysimeters. Volumetric soil water contents were measured with a neutron probe. A water-table (EC = 0.01 S m-1) was established 1 m below the soil surface 18 DFS. RLD values were greater in L1 than L2 at any depth. In L1, maximum RLD values (3 × 104 m m-3) were measured immediately above the water-table at physiological maturity (133 DFS). In L2, maximum RLD values (1.5 × 104 m m-3) were measured at 0.42 m on 120 DFS and few roots were present above the water-table. From 71 to 74 DFS, 55 and 64% of E was extracted from above 0.2 m for L1 and L2, respectively. In L2, extraction was essentially limited to the upper 0.4 m, while L1 extraction was to 0.8 m depth. Around 100 DFS the water-table contributed 29% (L1) and 7% (L2) of the water evaporated. This proportion increased rapidly as the upper soil layers dried following the last substantial irrigation 106 DFS. Over the whole season the water-table contributed 24% in L1 and 6.5% in L2 of total E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Accurate estimation of crop evaporation from a range of soil types is fundamental to the continued improvement of irrigation management. In this experiment soybean crop evaporation was measured using two weighing lysimeters, one with an undisturbed block of Hanwood loam (L1), the other with undisturbed Mundiwa clay loam (L2). Although both soils have clay profiles the Hanwood loam was much more freely draining. A fresh water-table (EC = 0.01 S m-1) was maintained 1 m below the soil surface of each lysimeter after 18 days from sowing (DFS). The crop (var. Chaffey) was sown on 18 November 1985 both in and around the lysimeters and was harvested 136 days later. Early crop growth was slower in L2 but growth stages after 60 DFS were similar to L1. Estimated leaf area indices exceeded 3 about 51 and 56 DFS for L1 and L2 respectively and were both greater than 9 at 90 DFS. The crop was well watered until at least 110 DFS. However daily rates of evaporation (E) from L1 noticeably exceeded those of L2 beginning around 50 DFS and increased to 30% greater for the period 70 to 115 DFS. This difference was not due to incorrect calibration. Plant water status measurements were generally similar although covered leaf water potential and foliage temperature values indicated that plants on L1 were less well hydrated than on L2. The causes of the E difference are not known, but it was observed that plants in L2 were about 0.1 m shorter than the surrounding plants which were similar in stature to those in L1. It was speculated that this difference in height created a shelter effect which reduced the net radiant energy absorbed by the canopy at low sun angles and reduced the wind speed controlling the turbulent exchange of water vapour. This study highlights the lack of under-standing that exists about the effect that small discontinuities in crop height can have on the spatial variability of evaporation within crops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...