Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Accurate estimation of crop evaporation from a range of soil types is fundamental to the continued improvement of irrigation management. In this experiment soybean crop evaporation was measured using two weighing lysimeters, one with an undisturbed block of Hanwood loam (L1), the other with undisturbed Mundiwa clay loam (L2). Although both soils have clay profiles the Hanwood loam was much more freely draining. A fresh water-table (EC = 0.01 S m-1) was maintained 1 m below the soil surface of each lysimeter after 18 days from sowing (DFS). The crop (var. Chaffey) was sown on 18 November 1985 both in and around the lysimeters and was harvested 136 days later. Early crop growth was slower in L2 but growth stages after 60 DFS were similar to L1. Estimated leaf area indices exceeded 3 about 51 and 56 DFS for L1 and L2 respectively and were both greater than 9 at 90 DFS. The crop was well watered until at least 110 DFS. However daily rates of evaporation (E) from L1 noticeably exceeded those of L2 beginning around 50 DFS and increased to 30% greater for the period 70 to 115 DFS. This difference was not due to incorrect calibration. Plant water status measurements were generally similar although covered leaf water potential and foliage temperature values indicated that plants on L1 were less well hydrated than on L2. The causes of the E difference are not known, but it was observed that plants in L2 were about 0.1 m shorter than the surrounding plants which were similar in stature to those in L1. It was speculated that this difference in height created a shelter effect which reduced the net radiant energy absorbed by the canopy at low sun angles and reduced the wind speed controlling the turbulent exchange of water vapour. This study highlights the lack of under-standing that exists about the effect that small discontinuities in crop height can have on the spatial variability of evaporation within crops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Crops grown with flood irrigation on slowly draining clay soils are subject to periods of waterlogging during and after each irrigation. The aim of this experiment was to quantify crop responses to these short-term waterlogging events and to assess the modifying effect of different agronomic practices. Maize was grown in undisturbed (U) and repacked (R) profiles of clay loam soil encased in steel cylinders (0.75 m diameter × 1.4 m deep). Two levels of N (high (HN) 300 kg N ha−1, and low (LN) 150 kg N ha−1) were applied as a split dressing. Three periods of flooding (F) of 72, 72 and 48 h were imposed on half the treatments beginning on days 40, 54 and 68 respectively after sowing. The other irrigation regime (C) kept the profile well watered but avoided surface inundation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 2 (1981), S. 167-176 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The onset of water stress within a crop is defined as the time at which the rate of water loss declines below that of a well watered crop in the same locality. The relation to the onset of water stress and soil water status of several readily measured plant parameters was investigated in crops of wheat and soybeans over three years. Evapotranspiration ET was monitored with weighing lysimeters. A noticeable decline in the rate of ET for both wheat and soybeans was detected once 20% to 30% of the total plant available water PAW remained in the 1 m deep lysimeter soil profile. Extension growth of wheat declined when PAW was 33% and 34% in two years of measurement. In soybeans, the decline in the rate of leaf extension coincided with the decline in the rate of ET. Midmorning measurement of exposed leaf water potential ψL, covered leaf water potential ψCL and covered plant leaf water potential ψCP yielded similar results for both wheat and soybeans. Day-to-day variability was least in ψCP and most in ψL. Values of ψCP, ψL and ψCL decreased rapidly with PAW 〈 30%. Daily values of leaf diffusive conductance were variable but there was a general decline in conductance with PAW 〈 30%. It is suggested that ψCL may be the easiest and most reliable parameter to monitor as a means of detecting the onset of stress. The results indicated that PAW levels in the root zone of 50% for wheat and 30% for soybean probably do not affect extension growth or plant water status parameters and can thus be used as criteria for irrigation scheduling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 11 (1990), S. 77-81 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Different soils are known to affect the amount and distribution of both available water and roots. Optimising irrigation water use, especially when shallow water-tables are present requires accurate knowledge of the root zone dynamics. This study was conducted to determine the effect of two soil types on root growth, soil water extraction patterns, and contributions of a water-table to crop evaporation (E). Two weighing lysimeters (L1 and L2) with undisturbed blocks of soil were used. The soil in L1 had higher hydraulic conductivity and lower bulk density than that in L2. Well watered conditions were maintained by irrigation for the first 110 days from sowing (DFS). Root length density (RLD) was calculated from observations made in clear acrylic tubes installed into the sides of the lysimeters. Volumetric soil water contents were measured with a neutron probe. A water-table (EC = 0.01 S m-1) was established 1 m below the soil surface 18 DFS. RLD values were greater in L1 than L2 at any depth. In L1, maximum RLD values (3 × 104 m m-3) were measured immediately above the water-table at physiological maturity (133 DFS). In L2, maximum RLD values (1.5 × 104 m m-3) were measured at 0.42 m on 120 DFS and few roots were present above the water-table. From 71 to 74 DFS, 55 and 64% of E was extracted from above 0.2 m for L1 and L2, respectively. In L2, extraction was essentially limited to the upper 0.4 m, while L1 extraction was to 0.8 m depth. Around 100 DFS the water-table contributed 29% (L1) and 7% (L2) of the water evaporated. This proportion increased rapidly as the upper soil layers dried following the last substantial irrigation 106 DFS. Over the whole season the water-table contributed 24% in L1 and 6.5% in L2 of total E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary There is an increasing demand from farmers for irrigation scheduling advice. Where rainfall and evapotranspiration vary little from year to year, advice on a fixed irrigation schedule based on mean climatic data can be given. However where significant year to year variability in weather occurs a more flexible approach using actual weather data to predict the current level of soil water and mean climatic data to forecast the future rate of depletion and hence irrigation date may be needed. A technique for deciding the most appropriate scheduling approach was tested by using a simple model of crop growth combined with a soil water balance model to simulate year to year variability in scheduling advice. This technique was applied to irrigated wheat using a set of climatic data from 1968 to 1978 for Griffith in the Murrumbidgee Irrigation Area of New South Wales, Australia. A typical sowing date in early June was used and simulated irrigations were scheduled at an allowable soil water depletion (ASWD) of 62 mm for maximum yield and 93 mm for 80% of maximum. The analysis predicted that weather variability between years would cause the number of irrigations to vary from 2 to 7 for ASWD=62 mm and 1 to 4 for ASWD=93 mm. The interval between irrigations varied from 12 to 30 days, for ASWD=62 mm and from 16 to 28 days, for ASWD=93 mm. The first irrigation occurred between 76 and 131 days from sowing for ASWD=62 mm and from 100 to 140 days from sowing for ASWD=93 mm. The date of the last irrigation was similarly variable. This high degree of variability in the times and frequency of irrigations indicated that in south-eastern Australia accurate irrigation scheduling advice can only be given by using a flexible model using both actual and mean climatic data. A fixed schedule based on mean climatic data would lead to an inefficient use of water caused by the mistiming of irrigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 12 (1991), S. 125-134 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary This paper reviews research carried out at the Griffith Laboratory in Australia over the last decade on techniques for, and results of, observations of roots in irrigated clay soils. Our results emphasise the adaptability of root systems to rootzone conditions. Experiences with techniques for observing roots non-destructively in the field and both non-destructively and destructively in lysimeters are described. We concluded that the minirhizotron technique, applied in the field, was unreliable under our conditions. Horizontal root observation tubes were used in lysimeters to measure root length density (RLD) and to assess whether roots were clumped together or randomly distributed. Destructive sampling and measurement of RLD was used to establish a theoretical relationship between root intercept counts along the tubes and RLD. The application of image analysis to both destructive and non-destructive sampling in the lysimeters is outlined. The non-destructive lysimeter studies showed that roots were significantly clumped. Analysis of root intercept and root hole counts on the faces of sample cubes taken from the lysimeters showed root distribution was anisotropic over the whole soil profile for both safflower and wheat. There were many more roots and root holes present in the sampled soil cubes than was indicated by independent sampling for washed out RLD. Safflower appeared to have a faster turnover of roots than did wheat or maize. Lysimeters, equipped with horizontal root observation tubes, enabled studies to be made of many factors affecting root growth. Soils affect where and how fast roots grow, although there is also a strong species interaction. For example, soybean roots proliferated above a fresh water table in one soil but not in another; wheat had little tendency to proliferate above the water table in either soil. In wet soils, roots cease to grow once soil oxygen levels decrease below 10 mg O2 l soil -1 . This level should form the basis for soil drainage criteria. In drying soils, roots will grow successively into soil regions containing soil water: the level of adaptation being determined by soil conditions, crop growth stage and level of evaporative demand. The methods of root observation used in our studies have given quantitative assessment of root distribution. However, further research is needed to link horizontal and vertical root distribution and root adaptation more strongly to crop development and soil conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Shallow saline water tables underlie large areas of the clay soils in the Murray basin of Australia. Accurate estimation of capillary rise is important in formulating management strategies to avoid degradation of such soils. Measured capillary rise from a saline water table was compared with capillary rise estimated by three mathematical models of varying complexity and input requirement. A quasi steady state analytical model (QS-SAM), a transient state analytical model (TSAM) and a numerical model (NM) were used. An undisturbed heavy clay soil core of 0.75 m diameter and 1.4m deep was subjected to a static saline water table at 1.2 m from the surface. A wheat crop was grown on the core and the weekly capillary rise from the water table was measured. The electrical conductivity of a 1:2 soil: water extract was determined at 0.15 m depth intervals before and 21 weeks after the introduction of the saline water table. The QSSAM did not satisfactorily estimate the initial wetting of the subsoil and the estimated capillary rise was considerably lower than the measured values. Capillary rise estimated by the TSAM was reasonably close to the measured values, but the weekly rates fluctuated considerably. The NM estimated capillary rise quite satisfactorily throughout the experiment. Except near the soil surface, the electrical conductivity values estimated by the NM were close to the measured values. For estimating total capillary rise over large areas, the TSAM is preferred over the NM because of its fewer input requirements and shorter execution time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 11 (1990), S. 233-237 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In a previous experiment, evaporation from soybeans (Glycine max L.) in two weighing lysimeters with different soil types was found to differ by up to 30%. This occurred despite good canopy development and maintenance of well watered conditions. The present experiment sought to repeat the previous observation and to define its cause. Soybeans were sown in and around the two weighing lysimeters on 9 December 1987 and were well watered through the entire season. The lysimeters, L1 and L2 contained undisturbed blocks of Hanwood loam and Mundiwa clay loam soils, respectively, both Rhodoxeralfs. Crop growth, radiant energy interception, soil heat flux, canopy temperature and root growth were monitored through the season. Plant growth in L2 was slower than in L1 such that by 46 days from sowing (DFS), L1 plants had one leaf more on average than those in L2 and by 76 DFS plants in L2 were about 0.1 m shorter than those in either L1 or in the area immediately surrounding it. The ratio of L2 to L1 daily evaporation was 0.76 during the period 75 to 84 DFS; this being very similar to the effect observed previoulsy. The crop canopy in a 100 m2 area centred around L2 was reduced in height by removing the top 0.15 m at 85 DFS. This treatment caused the L2∶L1 evaporation ratio to increase to 1.07. The effect of reducing the height of plants surrounding L2 was to increase net radiant energy intercepted in the canopy of the L2 plants and to change the turbulent transfer processes over the L2 canopy. Shading from the taller surrounding plants was estimated to have reduced evaporation by 4% while increased aerodynamic resistance above the L2 canopy as the result of the height discontinuity accounted for a further 20% reduction. This study highlights limitations in the application of one dimensional energy balance theory to non-ideal canopy configurations and to the care needed to ensure plant growth within lysimeters is the same as the surrounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Keywords: aeration ; flooding ; Gossypium hirsutum L. ; root zone ; soil oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Surface-irrigated cotton (Gossypium hirsutum L.) grown on slowly draining clay soil is subjected to short-term periods of waterlogging at each irrigation which generally results in reduced productivity. The sequence of above- and below-ground plant responses to transient waterlogging and the role of N availability in modifying the immediate responses were studied. Lysimeters of Marah clay loam (a Natrustalf) were instrumented to monitor soil and plant responses to a 7-day waterlogging event beginning 67 days after sowing. Cotton (‘Deltapine 61’) plants (8 per lysimeter) were grown with two levels of added N (300 kg ha−1 and 30 kg ha−1) and two irrigation treatments (flooded and control). Measured soil-O2 levels decreased rapidly upon surface flooding because water displaced air and root zone respiration consumed O2. The rate of O2 consumption was 2.7 times greater in the high-N treatment than the low-N treatment. This difference was associated with a 1.8 fold difference in numbers of observed roots. Root growth was only slightly affected by flooding. Leaf growth decreased by 28%, foliage temperature increased 2.3% and apparent photosynthesis decreased by 16%. It is suggested that flooding reduced photosynthetic activity within 2 days while other stress symptoms became apparent after about 6 days. Although this stress was reflected in a trend for decreased plant productivity, the effect of flooding on boll dry mass at harvest was not significant at the level of replication used. The single waterlogging did not cause yield reductions comparable to those observed elsewhere when several waterlogging events were imposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 85 (1985), S. 237-247 
    ISSN: 1573-5036
    Keywords: Fibrescope ; Observation tubes ; Root distribution ; Root growth ; Wheat growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Non-destructive observations of root growth and distribution can be obtained from counting root intercepts with observation tubers inserted in the root zone. This paper describes the technique of inserting clear acrylic tubes horizontally into large undisturbed and repacked soil cores. Counts of roots intersecting scribed lines on the sides of the tubes were made with a fibrescope. Comparison was made between observation root tubes of different diameter (25 and 38.5 mm). The r2 values for the relationships between root intercept counts and destructively determined values of root length density (RLD) ranged from 0.78 to 0.96. The larger diameter tubes had higher r2 values. Theoretical calibration of the technique does not appear to be possible since analysis indicated that fewer roots intersected the scribed lines on the observation tube than would have been expected from a non-disturbed, randomly distributed root system. It is not known if this discrepancy is due to non-randomness or to an artifact associated with the insertion of the observation tube. Roots were not more prolific at the edge of the soil cores. Comparison of values of root length per unit soil surface area, rates of downward root growth and water uptake rates were within the ranges previously reported for wheat roots of field crops grown on clay soils. Observed root growth and distribution was found to be sensitive to four soil and water treatments imposed. It is concluded that the technique will allow quantitative analysis of root growth and distribution in undisturbed soil cores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...