Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol−1 for Jmax and 65 kJ mol−1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...