Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The withdrawal reflex system of higher vertebrates has been extensively used as a model for spinal sensorimotor integration, nociceptive processing and plasticity. In the rat, the nociceptive withdrawal reflex system appears to have a modular organization. Each reflex module controls a single muscle or a few synergistic muscles, and its cutaneous receptive field corresponds to the skin area withdrawn upon contraction of the effector muscle(s) when the limb is in the standing position. This organization principle is at odds with the ‘flexion reflex’ concept postulated from cat studies. To assess the generality of the modular organization principle we have therefore re-examined the cutaneous input to the withdrawal reflex system of the cat. The cutaneous receptive fields of hindlimb and forelimb muscles were mapped using calibrated noxious pinch stimulation and electromyographic recording technique in barbiturate anaesthetized animals. The investigated muscles had specific cutaneous receptive fields that appeared to correspond to the area of the skin withdrawn upon contraction of the muscle when the limb is in the standing position. The spatial organization of receptive fields in the cat was similar to that in the rat. However, differences in gain properties of reflexes to some anatomically equivalent muscles in the two species were observed, possibly reflecting adaptations to the biomechanics characteristic of the digitigrade and plantigrade stance in cats and rats, respectively. Implications of the findings for the generality of the modular organization of the withdrawal reflex system and for its adaptive properties are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 88 (1992), S. 615-622 
    ISSN: 1432-1106
    Keywords: Cerebellar cortex ; Mossy fibre input ; Parallel fibres ; Field potentials ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Mossy fibre evoked activity in the cerebellar cortex elicited by peripheral electrical stimulation was studied in chloralose anesthetized cats. The distribution of intracortical field potentials in the C3 and D zones was mapped in order to determine if there is a spread of synaptic activity outside the mossy fibre termination area. This area was identified by the presence of short latency synaptic field potentials in the granular layer. 2. Molecular layer field potentials were recorded up to 1.5 mm outside the mossy fibre termination area. The latencies of these potentials increased with increasing distance from the mossy fibre termination area, corresponding to a conduction velocity of about 0.4 m/s. 3. Recordings from Purkinje cells, within and outside the mossy fibre termination area, revealed an increase of simple spike activity at latencies corresponding to those of the field potentials in the same location. 4. From the spatial and temporal characteristics of the evoked activity, it is concluded that a mossy fibre input results in spread of synaptic activity along the parallel fibres. 5. The findings are discussed in relation to the recently discovered microzonal organization of the C3 zone. It is proposed that the organization of this zone offers a possibility for the control of muscle synergies, each synergy being represented by a mossy fibre input and the specific set of microzones activated by this input via the parallel fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 117 (1997), S. 389-398 
    ISSN: 1432-1106
    Keywords: Key words Motor control ; Spino-olivary pathways ; Inferior olive ; Cerebellum ; Ferret
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The organization of climbing fibre input to the cerebellar anterior lobe of the ferret was investigated in barbiturate-anaesthetized animals. Climbing fibre field potentials evoked on electrical stimulation of forelimb and hindlimb nerves were recorded at the cerebellar surface. Based on characteristic latencies of climbing fibre responses and their relative localization along the longitudinal axis of the folia, nine sagittally oriented zones could be distinguished and were tentatively named, from medial to lateral, A, X, B, C1, Cx, C2, C3, D1 and D2. Within the C1, C2 and C3 zones, climbing fibre input from the ipsilateral forelimb was found caudally and from the hindlimb rostrally, while the corresponding topographical representation in the B and D2 zones was medial to lateral. The X, Cx and D1 zones did not receive input from the hindlimb, while input from the forelimb to the A zone was weak. Overall, the sagittal zonal organization of climbing fibre input appears to conform with the compartmentalization of the ferret cerebellum based on the myeloarchitecture of corticonuclear fibres, although the X and Cx zones have not been previously identified. In terms of both general electrophysiological characteristics of input to different zones and intrazonal topographical representation, the organization of climbing fibre input to the ferret cerebellum seems to strongly resemble that in the cat. The findings thus provide evidence of cross-species generality of cerebellar sagittal organization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...