Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2641-2647 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oxide traps generated by reactive ion etching are studied using a pulsed femtosecond laser. The second harmonic generation (SHG) signal from the Si/SiO2 interface is sensitive to charged traps in the oxide. The time evolution of the SHG signal indicates that positive traps predominate. The angular dependence of the polarized signal shows that the electric field generated by the oxide traps alters the symmetry of the sample. The damage is greatest for an oxide thickness of 13 nm (for a plasma dc bias of 300 V). Thicker oxides have smaller SHG signals, presumably because the Fowler–Nordheim tunneling currents induced by plasma charging of the oxide surface are smaller. Very thin oxides also exhibit reduced damage. The time dependent SHG signals depend on the temperature of the samples; these data provide information on the trapping and detrapping of substrate electrons by oxide holes. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 3391-3401 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The internal structure of the toroidicity-induced Alfvén eigenmode (TAE) is studied by comparing soft x-ray profile and beam ion loss data taken during TAE activity in the DIII-D tokamak [W. W. Heidbrink et al., Nucl. Fusion 37, 1411 (1997)] with predictions from theories based on ideal magnetohydrodynamic (MHD), gyrofluid, and gyrokinetic models. The soft x-ray measurements indicate a centrally peaked eigenfunction, a feature which is closest to the gyrokinetic model's prediction. The beam ion losses are simulated using a guiding center code. In the simulations, the TAE eigenfunction calculated using the ideal MHD model acts as a perturbation to the equilibrium field. The predicted beam ion losses are an order of magnitude less than the observed ∼6%–8% losses at the peak experimental amplitude of δBr/B0(similar, equals)2–5×10−4. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 2113-2119 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Much is known about the behavior of energetic ions in tokamak devices but much remains to be understood. Single-particle effects are well understood and provide a firm basis for extrapolation to a burning plasma. In contrast, collective effects involving fast ions are more poorly understood and extrapolations are unreliable. Collective modes of concern include toroidicity-induced and ellipticity-induced Alfvén eigenmodes, kinetic ballooning modes, and internal kink modes. In addition to these magnetohydrodynamic normal modes, there are also energetic particle modes characterized by strong dependence on the fast-ion distribution function. Although many issues are important areas of study in current experiments, five issues distinguish burning plasma experiments. First, the energetic alphas are not the dominant source of free energy for the instabilities unless the fusion power exceeds the heating power by a factor of 10. Second, the damping of the instabilities depends sensitively on mode coupling to other heavily-damped waves. The magnitude of this coupling is expected to depend on the normalized thermal gyroradius, which is much smaller in a reactor. Third, in a reactor, both the radial extent of the instabilities and the fast-ion orbit contract relative to current experiments, so the fast-ion transport will change. Fourth, when instability occurs, a larger number of modes are unstable, so the mechanism of nonlinear saturation could shift from fast-ion transport to mode coupling. Fifth, because of the extreme sensitivity of energetic particle modes to the distribution function, an isotropic alpha particle distribution function differs from anisotropic fast-ion populations. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1147-1161 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An instability with a lower frequency than the toroidicity-induced Alfvén eigenmode was initially identified as a beta-induced Alfvén eigenmode (BAE). Instabilities with the characteristic spectral features of this "BAE" are observed in a wide variety of tokamak plasmas, including plasmas with negative magnetic shear. These modes are destabilized by circulating beam ions and they transport circulating beam ions from the plasma core. The frequency scalings of these "BAEs" are compared to theoretical predictions for Alfvén modes, kinetic ballooning modes, ion thermal velocity modes, and energetic particle modes. None of these simple theories match the data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments to explore the long-time evolution of noninductive, high βp plasmas in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159], have identified a new, quiescent, high performance regime. The experiments were carried out at low current (400–800 kA) with medium power neutral beam injection (3–10 MW). This regime is characterized by high q0 ((approximately-greater-than)2) and moderate li(∼1.3). It is reached by slow relaxation of the current profile, on the resistive time scale. As the profiles relax, q0 rises and li falls. When q0 goes above 2 (approximately), magnetohydrodynamic (MHD) activity disappears, and the stored energy rises. Most dramatic is the strong peaking of the central density, which increases by as much as a factor of 2. The improved central confinement appears similar to the PEP/reversed central shear/second stable core modes seen in tokamak experiments, but in this case without external intervention or transient excitation. At high current, a similar, but slower relaxation is seen. Also notable in connection with these discharges is the behavior of the edge and scrape-off layer (SOL). The edge localized modes (ELM's) as seen previously, are small and very rapid (to 1 kHz). The SOL exhibits high density (≥1×1019 m−3), which shows little or no falloff with radius. Also the power deposition at the divertor surface is very broad, up to four times the width usually seen. This regime is of particular interest for the development of steady-state tokamak operating scenarios, for the Tokamak Physics Experiment (TPX), and following reactors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium–tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total noninductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [fφ(0)∼30–60 kHz] and ion temperature [Ti(0)∼15–22 keV] profiles are observed. In high-power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H≡τE/τITER-89P∼2.5 with an L-mode edge, and H∼3.3 in an edge localized mode (ELM)-free H mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in the L mode leads to high disruptivity with βN≡βT/(I/aB)≤2.3, while broader pressure profiles in the H mode gives low disruptivity with βN≤4.2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 2690-2692 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Two magnetically insulated gas-puff diodes were tested. In one design the plasma source was a fast inductive coil; in the other a coaxial gun created the plasma. The plasma current density from both sources, as well as the accelerated beam from each, was comparable to the Child–Langmuir limit of ∼10 A/cm2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3871-3875 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A simple, versatile device for dispersing micrometer- and submicrometer-sized particles in vacuum is described. The source allows control of particle size (0.5 μm≤l≤200 μm) and particle flux density up to roughly 107 cm−2 s−1. Several types of microparticles were successfully dispersed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3137-3139 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A 15 MeV proton diagnostic that is patterned after the ASDEX proton probe is presently being fabricated for the DIII-D tokamak. A bellows assembly inserts a silicon detector into the vacuum for plasma operation and retracts it for baking. The detector preamplifier is situated in a reentrant tube (at atmosphere) beside the detector; electrically, the whole assembly is referenced to vessel potential. Orbit calculations in realistic magnetic field geometries predict a proton detection efficiency of O(10−7). The diagnostic will be used for burnup studies at high β and particle transport studies in the H mode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...