Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1880-1882 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Over the past three years, the total TMX-U diagnostic data base has grown to exceed 10 Mbytes from over 1300 channels; roughly triple the originally designed size. This acquisition and processing load has resulted in an experiment repetition rate exceeding 10 min per shot using the five original Hewlett–Packard HP-1000 computers with their shared disks. Our new diagnostics tend to be multichannel instruments, which, in our environment, can be more easily managed using local computers. For this purpose, we are using HP series 9000 computers for instrument control, data acquisition, and analysis. Fourteen such systems are operational with processed format output exchanged via a shared resource manager. We are presently implementing the necessary hardware and software changes to create a local area network allowing us to combine the data from these systems with our main data archive. The expansion of our diagnostic system using the parallel acquisition and processing concept allows us to increase our data base with a minimum of impact on the experimental repetition rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1929-1931 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A commercial database software package has been used to create several databases and tools that assist and enhance the ability of experimental physicists to analyze data from the Tandem Mirror Experiment-Upgrade (TMX-U) experiment. This software runs on a DEC-20 computer in M-Divisions's User Service Center at Lawrence Livermore National Laboratory (LLNL), where data can be analyzed off line from the main TMX-U acquisition computers. When combined with interactive data analysis programs, these tools provide the capability to do batch-style processing or interactive data analysis on the computers in the USC or the supercomputers of the National Magnetic Fusion Energy Computer Center (NMFECC) in addition to the normal processing done by the TMX-U acquisition system. One database tool provides highly reduced data for searching and correlation analysis of several diagnostic signals within a single shot or over many shots. A second database tool provides retrieval and storage of unreduced data for use in detailed analysis of one or more diagnostic signals. We will show how these database tools form the core of an evolving off-line data analysis environment on the USC computers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: © American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection taking place when the heating power exceeds a threshold value of about 9 MW, contrasting to co-NBI injection, where Pthreshold〈2.5 MW. Expansion of the ITB is enhanced compared to similar co-injected discharges. Both differences are believed to arise from modification of the E×B shear dynamics when the sign of the rotation contribution is reversed. Sustainment of an AT regime with βNH89=9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode (edge localized, high confinement mode) edge and an ITB, and exhibiting ion thermal transport down to 2–3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency magnetohydrodynamic (MHD) activity is identified as the probable cause. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ∼10 has been sustained for 〉5 τE with qmin〉1.5. These edge localized modes (ELMing) H-mode discharges have β∼5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89∼7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 5140-5150 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Particle losses associated with edge localized mode (ELM) activity on the DIII-D tokamak [J. Luxon et al., Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986, Vol. I, p. 159] are evaluated quantitatively using density profile data obtained from a Thomson scattering system. It is shown that up to 10% of the total core particle content is lost with each ELM. The particle loss varies inversely with ELM frequency. The temporally averaged ELM particle loss is shown to be about 25% of the total particle loss from the confined region under a wide variety of plasma conditions. Although this ELM loss is a small fraction of the total ion flux, it is large compared to the particle input from neutral beam heating. Hence ELM particle losses are sufficient to control the density rise associated with H-mode plasma operation with neutral beam heating. In addition to controlling the average density by enhancing the total ion flow, albeit only by 25%, it is posited that the ELMs play a role in determining the density profile in the H-mode pedestal region. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The confinement and the stability properties of the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high-performance discharges are evaluated in terms of rotational and magnetic shear, with an emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped-electron-ηi mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the ηi mode suggests that the large core E×B flow shear can stabilize this mode and broaden the region of reduced core transport. Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low βN≤2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges, which has a broad region of weak or slightly negative magnetic shear (WNS), is described. The WNS discharges have broader pressure profiles and higher β values than the NCS discharges, together with high confinement and high fusion reactivity. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total noninductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [fφ(0)∼30–60 kHz] and ion temperature [Ti(0)∼15–22 keV] profiles are observed. In high-power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H≡τE/τITER-89P∼2.5 with an L-mode edge, and H∼3.3 in an edge localized mode (ELM)-free H mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in the L mode leads to high disruptivity with βN≡βT/(I/aB)≤2.3, while broader pressure profiles in the H mode gives low disruptivity with βN≤4.2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have been produced by combining the benefits of a hollow or weakly sheared central current profile [Phys. Plasmas 3, 1983 (1996)] with a high confinement (H mode) edge. In these discharges, low-power neutral beam injection heats the electrons during the initial current ramp, and "freezes in" a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L mode) to high (H mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high-performance phase is terminated nondisruptively at much higher βT (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang–Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E×B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium–tritium (DT) fuel mixture indicates that such plasmas could produce a DT fusion gain QDT=0.32. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Discharges with negative central magnetic shear (NCS) hold the promise of enhanced fusion performance in advanced tokamaks. However, stability to long wavelength magnetohydrodynamic modes is needed to take advantage of the improved confinement found in NCS discharges. The stability limits seen in DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] experiments depend on the pressure and current density profiles and are in good agreement with stability calculations. Discharges with a strongly peaked pressure profile reach a disruptive limit at low beta, βN=β(I/aB)−1≤2.5 (% m T/MA), caused by an n=1 ideal internal kink mode or a global resistive instability close to the ideal stability limit. Discharges with a broad pressure profile reach a soft beta limit at significantly higher beta, βN=4 to 5, usually caused by instabilities with n〉1 and usually driven near the edge of the plasma. With broad pressure profiles, the experimental stability limit is independent of the magnitude of negative shear but improves with the internal inductance, corresponding to lower current density near the edge of the plasma. Understanding of the stability limits in NCS discharges has led to record DIII-D fusion performance in discharges with a broad pressure profile and low edge current density. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...