Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernández et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to vz∼107 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 15-19 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Gas breakdown is studied in an atmospheric pressure rf capacitive plasma source developed for materials applications. At a rf frequency of 13.56 MHz, breakdown voltage is largely a function of the product of the pressure and the discharge gap spacing, approximating the Paschen curve. However, breakdown voltage varies substantially with rf frequency due to a change in the electron loss mechanism. A large increase in breakdown voltage is observed when argon, oxygen, or nitrogen is added to helium despite their lower ionization potential. Discussion is given for optimal breakdown conditions at atmospheric pressure. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 20-28 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Discharge phenomena of a nonthermal atmospheric pressure plasma source have been studied. An atmospheric pressure plasma jet (APPJ) operates using rf power and produces a stable homogeneous discharge at atmospheric pressure. After breakdown, the APPJ operation is divided into two regimes, a "normal" operating mode when the discharge is stable and homogeneous, and a "failure" mode when the discharge converts into a filamentary arc. Current and voltage (I–V) characteristics and spatially resolved emission intensity profiles have been measured during the normal operating mode. These measurements show that the APPJ produces an alpha (α) mode rf capacitive discharge. Based upon a dimensional analysis using the observed I–V characteristics, a rough estimate is made for plasma density of 3×1011 cm−3 and an electron temperature of 2 eV. In addition, the gas temperature of 120 °C has been spectroscopically measured inside the discharge. These plasma parameters indicate that the APPJ shows promise for various materials applications as it can produce substantial amounts of reactive species and avoid thermal damages, while having the advantage of atmospheric pressure operation. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 306-308 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Performance evaluation of a gas-puff neutralizer utilizing the hydrogen component of a flashover-anode, magnetized ion diode is described. A 200 cm2 source provides kiloamperes of ion flow into an annular channel 300 cm2 in cross section, 0.5 m long, into which the neutralizing H2 cloud is injected. Up to ∼50% of the H+ ion beam which flows through the cell in the absence of neutralizing gas can be converted to atomic hydrogen at the energies useful for beam spectroscopy. The detectors utilized in neutral flow measurements are also described. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 288-290 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An atmospheric pressure plasma source operated by radio frequency power has been developed. This source produces a unique discharge that is volumetric and homogeneous at atmospheric pressure with a gas temperature below 300 °C. It also produces a large quantity of oxygen atoms, ∼5×1015 cm−3, which has important value for materials applications. A theoretical model shows electron densities of 0.2–2×1011 cm−3 and characteristic electron energies of 2–4 eV for helium discharges at a power level of 3–30 W cm−3. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 1342-1346 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Large improvements in spheromak parameters and new understanding have been obtained from the CTX experiment at Los Alamos [Phys. Rev. Lett. 51, 39 (1983); 61, 2457 (1988)]. In one experiment the global energy confinement time has been increased an order of magnitude over previous experiments to 0.2 msec and the magnetic-energy decay time increased to 2 msec. These results were achieved in a decaying spheromak by reducing the helicity dissipation in the edge. In another smaller spheromak, record electron temperatures (∼400 eV) and record magnetic field strengths (∼30 kG) have been obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The conjecture that magnetic helicity (linked flux) is conserved in magnetized plasmas for time scales that are short compared to the resistive diffusion time is experimentally tested in the CTX spheromak [Phys. Rev. Lett. 45, 1264 (1980); 51, 39 (1983); Nucl. Fusion 24, 267 (1984)]. Helicity is created electrostatically by current drawn from electrodes. The magnetized plasma then flows into a conducting flux conserver where the energy per helicity of the plasma is minimized and a spheromak is formed on a relaxation time scale of many Alfvén times. The magnetic field strength of the equilibrium is subsequently increased and sustained. The amount of helicity created by the magnetized coaxial plasma source, the helicity content of the spheromak equilibrium, and the resistive loss of the helicity are measured to determine the balance of helicity between source and spheromak with a ±16% uncertainty. In CTX the amount of energy that must be rapidly dissipated within the conducting boundary while conserving helicity in the process of sustaining the spheromak is experimentally controllable, and has varied from 1.8 times the spheromak magnetic energy to greater than 10 times. The relaxation, or minimization of the energy-to-helicity ratio, determines the gross structure (the normalized spatial profile) of the spheromak, while the conservation of helicity itself determines the magnitude and time dependence of the magnetic fields of the spheromak equilibrium. Helicity balance tests are done by individually varying the sign and magnitude of the source voltage and flux, and by observing sustainment of spheromaks with fields opposing those of the source. A threshold for helicity injection from the source is measured and related to the source and entrance region size. During times short compared to resistivediffusion time scales the helicity is shown to be conserved with a ±12% uncertainty using no free parameters. For longer times the resistive dissipation Its value is independently measured and appears to be related to the expected classical resistive decay. Absolutely calibrated bolometer measurements are consistent with excess source energy heating the spheromak plasma during the sustainment by electrostatic helicity injection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 1871-1888 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electrostatic (dc) helicity injection has previously been shown to successfully sustain the magnetic fields of spheromaks and tokamaks. The magnitude of the injected magnetic helicity balances (within experimental error) the flux lost by resistive decay of the toroidal equilibrium. Hence the problem of optimizing this current drive scheme involves maximizing the injected helicity (the voltage-connecting-flux product) while minimizing the current (which multiplied by the voltage represents the energy input and also possible damage to the electrodes). The impedance (voltage-to-current ratio) and energy efficiency of a dc helicity injection experiment are studied on the CTX spheromak [Phys. Fluids 29, 3415 (1986)]. Over several years changes were made in the physical geometry of the coaxial magnetized plasma source as well as changes in the external electrical circuit. The source could be operated over a wide range of external charging voltage (and hence current), applied axial flux, and source gas flow rate.A database of resulting voltage, helicity injection, efficiency, electron density, and rotation has been created. These experimental results are compared to an ideal magnetohydrodynamic theory of magnetic flux flow. The theory is parametrized by the dimensionless Hall parameter, the ratio of electric to mass current. For a constant Hall parameter the theory explains why the voltage depends quadratically on the current at constant flux. The theory also explains the approximately linear dependence of the impedance-to-current ratio on the current-to-flux ratio of the source. The current-to-flux ratio itself (the energy-per-unit helicity of the source) is bounded below by considerations of force balance. While the rotation of the flow is not understood, the density of the sustained spheromak is shown to be related to the mass flow in the source, supporting the constant Hall parameter assumption. The overall efficiency of sustainment through dc helicity injection is limited by the usual Ohmic resistive decay, by the force-balance limits on the current-to-flux ratio, by the losses of the external electrical circuit, and by the fundamental limitations on the achievable impedance of flux flow in a magnetized plasma. Even so, ratios of spheromak magnetic energy to capacitor bank energy of over 17% have been achieved on CTX. Ignoring external circuit losses the efficiency of electrostatic helicity injection for converting energy received by the coaxial source to the energy of the spheromak magnetic field has exceeded 70%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 4934-4936 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: For the next generation, burning tokamak plasmas such as in the International Thermonuclear Experimental Reactor (ITER), diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasmas parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 50-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...