Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 76 (1988), S. 325-337 
    ISSN: 1432-0533
    Keywords: Herpes simplex virus ; Multiple sclerosis ; Demyelinative disease ; Herpes encephalitis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using immunohistochemical methods optimized to detect herpes simplex virus type 2 (HSV-2) antigen, paraffin sections from human central nervous system tissues from 31 cases pathologically diagnosed as multiple sclerosis (MS), 34 cases of other neurological diseases, 4 adult cases of HSV encephalitis, and mouse brains infected with various HSV strains were examined. Two distinct patterns of immunoreactivity with HSV antisera were seen. In typical acute human and experimental encephalitis, antigen was readily detected using high dilutions of antisera to both HSV types −1 and −2, and was found nonselectiviely in both neurons and glia. Lesions were destructive, with necrosis of all neural cell types, and inflammation was a mixture of polymorphonuclear and mononuclear cells. By contrast, immunoreactivity in lesions in each of three MS cases and in one case of brain stem encephalitis was found only with HSV-2 antisera, and relatively high antiserum concentrations were required to detect it. Reactivity appeared to be largely restricted to glial cell nuclei within and near lesions that were selectively demyelinated. Only mononuclear inflammation was present. These experiments suggest that HSV-related antigen may be found in a broader spectrum of human CNS lesions than has previously been recognized, and that HSV or a related agent may be associated with a selective infection of glial cells and with CNS demyelination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 151 (1978), S. 313-318 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Motor endplates in the developing avian superior oblique muscle first appear on day 18 of incubation. Most of the endplates from this time through hatching (day 27) are innervated by multiple fibers. Each endplate in the post-hatching period is innervated by only one fiber. Time of elimination of multineuronal innervation does not correlate with the time of trochlear neuron loss; the former occurs much later in development. Removal of multiple innervation is therefore, not the cause of the naturally occurring neuron loss.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 210 (1980), S. 383-393 
    ISSN: 1432-0878
    Keywords: Avian skeletal muscle ; Development ; Normal, aneural, paralyzed muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The extent to which the motor innervation regulates the embryonic development of skeletal muscle was investigated by comparing changes in normal, aneural, and paralyzed superior oblique muscle of the duck embryo. The muscle was made aneural by permanently destroying the trochlear motor neurons with electrocautery on day 7 i.e., three days prior to innervation. Embryos were paralyzed by daily application of α-bungarotoxin onto the chorioallantoic membrane from day 10 onwards. The differentiation of myoblasts and myotubes in the aneural muscle was severely affected and did not progress to the myofiber stage. A mass of dead cells in the aneural muscle was replaced by connective tissue. Although the differentiation of myoblasts and myotubes was also retarded in the paralyzed muscle, numerous muscle cells progressed to the myofiber stage. Neuromuscular junctions of normal ultrastructure were seen in all paralyzed muscles. Degeneration of some cells in the paralyzed muscle occurred but there was no evidence of a massive wave of cell death similar to that observed in the aneural muscle. These observations suggest that both the trophic factors from the nerve and the nerve-evoked muscle activity are essential for the execution of the developmental program of the muscle. Trophic factors may play a larger role in differentiation, and maintenance of the muscle than muscle activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...