Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Isolated rat brain capillaries were incubated in the presence of high-density lipoprotein (HDL) containing [stearic acid-14C, (methyI-3H)choline]sphmgomyelim. This double-labeled sphingomyelin was taken up in a concentration-dependent manner. Cerebral capillary-associated sphingomyelin had a 3H/14C ratio close to that of the incubation medium, a result indicating uptake of sphingomyelin without prior hydrolysis. TLC of lipid extracted from capillaries showed that part of the sphingomyelin (up to 40%) was hy-drolyzed in the brain capillaries to ceramide and free fatty acids. The hydrolysis was proportional to the amount of in-corporated sphingomyelin and reached a plateau when the HDL sphingomyelin concentration in the medium was 237 nmol/ml. The results of “pulse-chase” experiments showed that the choline moiety of sphingomyelin was recovered in the incubation medium after the chase period and that there was no redistribution of liberated choline in phosphatidylcholine of capillaries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Wistar rats were fed for three generations with a semisynthetic diet containing either 1.5% sunflower oil (940 mg% of C18:2n-6, 6 mg% of C18:3n-3) or 1.9% soya oil (940 mg% of C18:2n-6, 130 mg% of C18:3n-3). At 60 days of age, the male offspring of the third generation were killed. The fatty acyl composition of isolated capillaries and choroid plexus was determined. The major changes noted in the fatty acid profile of isolated capillaries were a reduction (threefold) in the level of docosahexaenoic acid and, consequently, a fourfold increase in docosapentaenoic acid in sunflower oil-fed animals. The total percentage of poly-unsaturated fatty acids was close to that in the soya oil-fed rats, but the ratio of n-3/n-6 fatty acids was reduced by threefold. In the choroid plexus, the C22:6n-3 content was also reduced, but by 2.6-fold, whereas the C22:5n-6 content was increased by 2.3-fold and the ratio of n-3/n-6 fatty acids was reduced by 2.4-fold. When the diet of sunflower oil-fed rats was replaced with a diet containing soya oil at 60 days of age, the recovery in content of n-6 and n-3 fatty acids started immediately after diet substitution; it progressed slowly to reach normal values after 2 months for C22:6n-5 and 2.5 months for C22:6n-3. The recovery in altered fatty acids of choroid plexus was also immediate and very fast. Recovery in content of C22:5n-6 and C22:6n-3 was complete by 46 days after diet substitution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Purified rat brain microvessels were prepared to demonstrate the occurrence of acyl-CoA (EC 6.2.1.3) synthesis activity in the microvasculature of rat brain. Both ara-chidonoyl-CoA and palmitoyl-CoA synthesis activities showed an absolute requirement for ATP and CoA. This activity was strongly enhanced by magnesium chloride and inhibited by EDTA. The apparent Km values for acyl-CoA synthesis by purified rat brain microvessels were 4.0 μM and 5.8 μM for palmitic acid and arachidonic acid, respectively. The apparent Vmax values were 1.0 and 1.5 nmol min−1 mg protein−1 for palmitic acid and arachidonic acid, respectively. Cross-competition experiments showed inhibition of radiolabelled arachidonoyl-CoA formation by 15 μM unlabelled arachidonic acid, with a Ki of 7.1 μM, as well as by unlabelled docosahexaenoic acid, with a Ki of 8.0 μM. Unlabelled palmitic acid and arachidic acid had no inhibitory effect on arachidonoyl-CoA synthesis. In comparison, radiolabelled palmitoyl-CoA formation was inhibited competitively by 15 μM unlabelled palmitic acid, with a Ki of 5.0 μM and to a much lesser extent by arachidonic acid (Ki, 23 μM). The Vmax of palmitoyl-CoA formation obtained on incubation in the presence of the latter fatty acids was not changed. Unlabelled arachidic acid and docosahexaenoic acid had no inhibitory effect on palmitoyl-CoA synthesis. Both arachidonoyl-CoA and palmitoyl-CoA synthesis activities were thermolabile. Arachidonoyl-CoA formation was inhibited by 75% after 7 min at 40°C whereas a 3-min heating treatment was sufficient to produce the same relative inhibition of palmitoyl-CoA synthesis. These data together strongly suggest that rat brain microvessels have the capacity to catalyze specifically the formation of acyl-CoA derivatives from several polyunsaturated long-chain fatty acids, including arachidonic acid in the first place. Besides this particular arachidonoyl-CoA synthetase, palmitic acid could be activated with the aid of a second acyl-CoA synthetase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Lipid second messengers such as arachidonic acid and its metabolites and diacylglycerols (DAGs) are affected in brain injury. Therefore, changes in the pool size and the fatty acid composition of free fatty acids (FFAs) and DAGs were analyzed in different rat brain areas 4 and 35 days after traumatic injury. Cortical impact injury of low-grade severity was applied in the right frontal somatosensory cortex. Four days after injury, FFAs and DAGs were increased by three- and twofold, respectively, in the injured cortex and to a lesser extent in the contralateral cortex compared with sham-operated animals. Docosahexaenoic acid followed by stearic acid, and arachidonic acid, displayed the greatest changes in both FFAs and DAGs. By day 35, free stearic, oleic, and arachidonic acids remained elevated in the damaged cortex (1.5-fold each). DAGs showed the greatest change, reaching values 2.7-fold higher than sham in all frontal and occipital cortical areas, including brainstem. Oleoyl- and arachidonoyl-DAGs (four- and threefold increase, respectively) followed by docosahexaenoyl-DAGs (twofold) contributed to the DAG accumulation. These results reveal that traumatic brain injury triggers a sustained and time-dependent activation of phospholipase-mediated signaling pathways leading to membrane phospholipid degradation and targeting, early on, docosahexaenoyl phospholipid-enriched excitable membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism 922 (1987), S. 345-350 
    ISSN: 0005-2760
    Keywords: 3-Hydroxybutyrate ; Acetate ; Acetoacetate ; Brain capillary ; Butyrate ; Glucose
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 194 (1993), S. 1413-1419 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 195 (1993), S. 144-150 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-6903
    Keywords: Arachidonic acid ; diacylglycerols ; docosahexaenoic acid ; free fatty acids ; phospholipase A2 ; phospholipase C ; traumatic brain injury
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Neurotrauma activates the release of membrane phospholipid-derived second messengers, such as free arachidonic acid (20:4n-6, AA) and diacylglycerols (DAGs). In the present study, we analyze the effect of cortical impact injury of low-grade severity applied to the rat frontal right sensory-motor cortex (FRC) on the accumulation of free fatty acids (FFAs) and DAGs in eight brain areas 30 min and 24 hours after the insult. At these times, accumulation of FFAs and DAGs occurred mainly in the damaged FRC. The cerebellum was the only other brain area that displayed a significant accumulation of DAGs by day one post-injury. By 30 min, accumulation of free AA in the FRC displayed the greatest relative increase (300% over sham value), followed by free docosahexaenoic acid (22:6n-3, DHA, 150%), while both 20:4-DAGs and 22:6-DAGs were increased 100% over sham values. At day one, free 22:6 and 22:6-DAGs showed the greatest increase (590% and 230%, respectively). These results suggest that TBI elicits the hydrolysis of phospholipids enriched in excitable membranes, targeting early on 20:4-phospholipids (by 30 min post-trauma) and followed 24 hours later by preferential hydrolysis of DHA-phospholipids. These lipid metabolic changes may contribute to the initiation and maturation of neuronal and fiber track degeneration observed following cortical impact injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...